
Automatic Generation of Penrose Empires

by
Jason B Healy

A Thesis Submitted in partial fulfillment of the
requirements for the Degree of Bachelor of Arts

with Honors in Computer Science

Williams College
Williamstown, MA

May 19, 2000

i

Abstract

Penrose tilings are infinite tilings that cannot tile the plane in a periodic
manner. They are of interest to researchers because they may model a new
type of matter called quasicrystals. Being able to easily generate and manipulate
Penrose tilings makes them easier to study, and that is the primary goal of this
research. Although Penrose tilings are infinite, we would like to be able to store
them in a finite device, such as a computer, so that they may be more easily
studied. The primary aim of this research is to attempt to discover some of the
underlying structure of Penrose tilings, so that the tilings can be reduced and
stored in an efficient, finite manner.

In addition to being able to store tilings, this research also aims to learn more
about constructing the tilings themselves. Because we are reducing an infinite
amount of data to a finite amount of information, there will necessarily be
some computation required to reconstruct the information that is not explicitly
stored. This research will investigate methods of constructing Penrose tilings
from a small amount of initial information.

The algorithms developed and discussed in this work allow us to represent
Penrose tilings as a small set of finite variables and then compute any arbitrary
information about the tiling on demand. In this way, we can reconstruct as
much of any tiling that we desire, without needing to store the entire tiling. It
is hoped that the methods used will allow more detailed study of Penrose tilings
to take place in future research.

ii

Acknowledgments

“All life is an experiment. The more experiments you make the better.”
—Ralph w. Emerson

“If I have seen farther it is by standing on the shoulders of giants.”
—Isaac Newton

This research would not have been possible without the help of several peo-
ple. My advisor, Duane Bailey, knew that I wanted to do an honors thesis before
I did (he seems to have a knack for this). Without his guidance and “motiva-
tional” talks, this work would have never been completed. He knew just when
to congratulate me on work well done, and (more often) when to tell me all the
things that still needed finishing.

I also owe a great thanks to Linden Minnick, who paved the way for my
research by performing her own. Out of respect for her, one of my Java objects
was given the name “Linden”. To this day I cannot believe that she hand-colored
so many pictures of Penrose Empires without losing her mind.

Finally, I thank Bill Lenhart, who helped me with revisions to this work.
Not only did he help my research, but also my morale. He always greeted me
with a smile and friendly conversation, and served as a reminder that I should
should be having fun, no matter what I’m doing.

Contents

1 Introduction 1
1.1 Tilings . 1
1.2 Aperiodic Tilings . 3
1.3 Penrose Tilings . 4
1.4 Legal Tilings . 5

2 Background for Research 8
2.1 Ammann Bars: A Non-Local Aid 8
2.2 Minnick’s Thesis . 10
2.3 Proposed work . 11

3 Musical Sequences 12
3.1 Theory . 12

3.1.1 Inflation . 12
3.1.2 Musical Sequence Rules 13
3.1.3 Deflation . 15
3.1.4 Forcings . 16

3.2 Ammann Bars . 17
3.3 Five-Fold Interactions . 18
3.4 Extended Theory . 18

3.4.1 Forcing Arbitrary Ammann bars 21
3.4.2 Minnick’s Work . 21

3.5 Pseudo-Code Implementation . 26

4 Forcing Rules 30
4.1 Finding Forced Shapes . 31

4.1.1 Finding Unique Patterns 33
4.2 Matching Patterns . 34
4.3 Forcing New Information . 34

4.3.1 Darts . 35
4.3.2 Minnick’s Double Kite . 35

4.4 Drawing Tiles . 35
4.4.1 Kites . 36
4.4.2 Darts . 37

iii

CONTENTS iv

4.5 Review . 37

5 Implementation 38
5.1 Overview . 38
5.2 Musical Sequences and Ammann Bars 39
5.3 Intersections . 40
5.4 Pattern Matching . 41
5.5 Feature Forcing . 46
5.6 Feature Drawing . 47
5.7 Pattern Matching Algorithm In Detail 47

5.7.1 Scan Line Algorithm . 49
5.7.2 Mapping Verification . 49

5.8 Complexity . 52
5.8.1 Ammann Bars . 53
5.8.2 Further Optimizations . 55

6 Results 56
6.1 Verified Empires . 56

6.1.1 The Ace . 57
6.1.2 The Deuce . 57
6.1.3 The Sun . 58
6.1.4 The Star . 58
6.1.5 The Jack . 58
6.1.6 The Queen . 58
6.1.7 The King . 58

7 Ongoing and Future work 76
7.1 Interference . 76
7.2 Three-Dimensional work . 85
7.3 Iterative Verification . 85

8 Summary and Conclusion 86

Colophon 88

List of Figures

1.1 An example of a tiling using a square as the only prototile. The
shaded tile shows an example of a prototile. The tiling has trans-
lational and rotational symmetry. 2

1.2 One possible unit cell in the box tiling. The shaded region shows
how four tiles can be combined into a larger unit cell which tiles
the plane. 2

1.3 Prototiles that could generate a non-periodic tiling. Each triangle
tile is the same as half of the square tile. 3

1.4 Penrose Kite (left) and Dart (right), with vertices colored to en-
force matching rules. 4

1.5 The seven legal vertex configurations in a Penrose tiling. 6

2.1 Penrose Kite (left) and Dart (right) with Ammann markings. . . 9

3.1 Inflation of a musical sequences, beginning with S. 13
3.2 Deflation of the musical sequences from Figure 3.1.1. 15
3.3 Examples of invalid musical sequences. The left example is triv-

ially invalid, but the right example requires several deflations
before the flaw becomes apparent. 16

3.4 The musical sequence LSLLSLSL represented using Ammann
bars. The intervals between bars are marked with their symbolic
equivalents to show the relationship between Ammann bars and
pure symbolic musical sequences. 17

3.5 The distance between two Ammann bars, represented in terms
of L and S. Above, all the possible orderings of symbols that fit
between two bars forced at a distance (4L+2S) from each other.
Notice that the middle bar (dark grey) always appears in the
same place, even though we did not explicitly force its position.
This bar is forced. 19

3.6 An example of how Ammann bars and Penrose tilings interact.
On the top, five sequences of Ammann bars. On the bottom, a
Penrose tiling. The center shows the two superimposed. 20

3.7 An unforced musical sequence represented as Ammann bars, and
a musical sequence with a single interval forced. 21

3.8 An empty integer lattice. 22

v

LIST OF FIGURES vi

3.9 Left: An integer lattice with a line of slope τ through it. Right:
The line with the y values truncated to integers. Bottom: the
integer values converted to interval symbols 23

3.10 A lattice with two lines with slope τ `0 and `1, with y-intercepts
0 and 1. 24

3.11 Forcing a bar in the integer lattice. 25
3.12 Definition of two truncation functions. 27
3.13 A pseudo-code implementation of the functions ForceBar and

IsBarForced. 28

4.1 The Ace configuration: an example of local tile forcing. 30
4.2 Penrose Kite (left) and Dart (right) with Ammann bars super-

imposed. 31
4.3 The four s in finding the empire of a patch of Penrose tiles, clock-

wise from upper left: (A) The initial patch of Penrose tiles. (B)
The Ammann bars forced by the initial tiles. (C) The new Am-
mann bars forced by the initial bars. (D) The new Penrose tiles
overlayed on the new Ammann bars. 32

4.4 An example of a false match, using insufficient information. On
the left, the Ace. On the right, the Queen. The bars in bold
are shared by the two configurations, and so are not sufficient to
match a unique pattern. 33

4.5 The two bars (shown in bold) from the Dart (Ace) that are not
required to be forced. Only one of these bars must be forced for
the Dart to be forced. 35

4.6 The “Double Kite” formation. Although the two Kites do not
directly force any Ammann bars, they force an Ammann bar at a
distance S from the Ammann bar that passes through both Kites. 36

4.7 A Kite tile, with the “Kite Triangle” Ammann bars in bold. . . . 36

5.1 A sample Ammann bar sequence, with center (x, y) and rotation θ. 39
5.2 A sample field of intersection points. The Ammann bars are

shown in light grey. A sample pattern like one we might search
for is shown at bottom. 40

5.3 A pseudo-code implementation of the Intersection-finding algorithm 41
5.4 A sample constellation. Note that the constellation is defined at

an angle and position that is easy to compute. 42
5.5 A sample ordering of points in a plane, from left to right, top

to bottom. Iterating over the points in order results in the path
shown. 43

5.6 A constellation with the unique point-pair marked. The points
are separated by a distance δ. 44

5.7 An example of the scan line used in the pattern-finding algorithm. 45
5.8 An example of how forcing information contained in the constel-

lation is applied to force new information in a tiling. 46

LIST OF FIGURES vii

5.9 A pseudo-code implementation of a function to force new Am-
mann bars in a Penrose tile. 48

5.10 A pseudo-code implementation of the scan line queue from the
pattern matching algorithm. 50

5.11 A pseudo-code implementation of the pattern verification algo-
rithm. 52

5.12 A graphical demonstration of how the scan line reduces the com-
plexity of the pattern matching algorithm. The total number of
points is n, but only

√
n points are under consideration at any

time. 54

6.1 Minnick’s vector distances relating Penrose tile vertices and Am-
mann bars. The distances correspond to those marked in Fig-
ure 6.1.7 and Figure 6.1.7. 59

6.2 Dart tile with Minnick’s distances from Figure 6.1.7 marked. . . 60
6.3 Kite tile with Minnick’s distances from Figure 6.1.7 marked. . . . 61
6.4 The initial constellation of the Ace configuration. 62
6.5 Ammann bar forcing distances for the Ace configuration. 62
6.6 The empire of the Ace configuration. No non-local tiles are forced

by this configuration. 63
6.7 The initial constellation of the Deuce configuration. 64
6.8 Ammann bar forcing distances for the Deuce configuration. . . . 64
6.9 Part of the empire of the Deuce configuration. 65
6.10 The initial constellation of the Sun configuration. 66
6.11 Ammann bar forcing distances for the Sun configuration. 66
6.12 The empire of the Sun configuration. No non-local tiles are forced

by this configurations. 67
6.13 The initial constellation of the Star configuration. 68
6.14 Ammann bar forcing distances for the Star configuration. 68
6.15 Part of the empire of the Star configuration. 69
6.16 The initial constellation of the Jack configuration. 70
6.17 Ammann bar forcing distances for the Jack configuration. 70
6.18 Part of the empire of the Jack configuration. 71
6.19 The initial constellation of the Queen configuration. 72
6.20 Ammann bar forcing distances for the Queen configuration. . . . 72
6.21 Part of the empire of the Queen configuration. 73
6.22 The initial constellation of the King configuration. 74
6.23 Ammann bar forcing distances for the King configuration. 74
6.24 Part of the empire of the King configuration. 75

7.1 Two-Ace interference: Separation 1 78
7.2 Two-Ace interference: Separation 2 79
7.3 Two-Ace interference: Separation 3 80
7.4 Two-Ace interference: Separation 4 81
7.5 Two-Ace interference: Separation 5 82
7.6 Two-Ace interference: Separation 6 83

LIST OF FIGURES viii

7.7 Two-Ace interference: Separation 7 84

Chapter 1

Introduction

Before launching into the more specific details that relate to this work, we will
provide a brief history of Penrose tilings so that the reader may become familiar
with the general background of the problem. In the next chapter, we outline the
more specific background of the empires of Penrose tilings, the primary concern
of this work.

1.1 Tilings

A tiling is generated by a finite set of prototiles that are arranged so that copies
of the prototiles cover the plane in an edge-to-edge adjacent manner. One of
the simplest tilings is a square with copies laid out next to each other to cover
a plane as in Figure 1.1. Here, the square is the only prototile.

This tiling exhibits various forms of repetition. For example, if an imaginary
ant was to walk along the tiling a distance equal to the width of one tile, the
tiling would appear, to the ant, to be the same. In the diagram, this is shown
by translating the point of reference from A to B. The result of this translation
suggests a nontrivial isomorphism of the tiling. It is nontrivial because not all
translations of a unit distance will preserve the isomorphism of the tiling. This
preservation of the tiling after translation is called translational symmetry. In a
similar fashion, if the tiling were rotated 90 degrees about A, an isomorphism of
the tiling would again be obtained. This is known as rotational symmetry, and
A is the center of rotational symmetry. Finally, if a tiling exhibits translational
symmetry, then the tiling is said to be periodic. The amount of translation
required to preserve the isomorphism of the tiling defines what is called the unit
cell. The unit cell is a finite portion of the tiling that can construct the entire
tiling by being copied and translated. In our square tiling, a sample unit cell
could be defined as a group of four squares, shown in Figure 1.1 (there are, of
course, other possibilities). It is obvious that this unit cell could be used to tile
the entire plane, and thus our square box tiling is periodic.

A tiling is non-periodic if there is no unit cell that can tile the plane using

1

CHAPTER 1. INTRODUCTION 2

A B

B'

Figure 1.1: An example of a tiling using a square as the only prototile. The
shaded tile shows an example of a prototile. The tiling has translational and
rotational symmetry.

Figure 1.2: One possible unit cell in the box tiling. The shaded region shows
how four tiles can be combined into a larger unit cell which tiles the plane.

CHAPTER 1. INTRODUCTION 3

Figure 1.3: Prototiles that could generate a non-periodic tiling. Each triangle
tile is the same as half of the square tile.

only translations. An example of a non-periodic tiling would be one where the
prototiles were either a square or an isosceles triangle equal to half the square
cut along its diagonal, as shown in Figure 1.1. Using these tiles, we could tile
the plane as in Figure 1.1, but change one of the squares into two triangles. This
would disrupt the periodicity of the tiling, because any unit cell that contained
the triangles could not be used to tile portions of the plane without the triangles,
and any unit cell that didn’t have the triangles could couldn’t account for the
two triangles that exist in the tiling.

However, this non-periodic tiling is non-periodic only because we cleverly
tiled the plane so that no nontrivial isomorphism could exist. Is there any set
of prototiles such that all tilings must be non-periodic? Such sets do exist, and
they are called aperiodic.

1.2 Aperiodic Tilings

The first set of aperiodic tiles was discovered in 1964 by Robert Berger. His
set contained over 20,000 prototiles, which was a slightly unwieldy number to
work with. Many people worked on reducing the number of tiles required for
aperiodicity, and in 1974 Roger Penrose [Pen74] discovered a set of only two
prototiles that tiled the plane aperiodically.

For a time, aperiodic tilings were considered only as an interesting problem
in recreational mathematics, due to their strange properties. For example, any
finite portion of an aperiodic tiling can be found infinitely many times in in-
finitely many tilings. Penrose tilings in particular exhibit icosahedral (five-fold)
symmetry, which is not found in any kind of periodic tiling.

However, in 1984, a new form of matter was discovered that had icosahedral
symmetry. Since icosahedral symmetry cannot be found in periodic tilings of
space, this new form of matter could not be described as a crystal, because
crystals were modeled purely on periodic structures. On the other had, the new
material could not be like glass, which has no structure whatsoever, because
the new matter appeared to possess an underlying structure. The new form
was called a quasicrystal in an attempt to capture both the structured and
non-crystalline properties of the matter.

Aperiodic tilings are a potential model for this new form of matter, since
they exhibit similar properties. Danzer [Dan89] constructed a three-dimensional

CHAPTER 1. INTRODUCTION 4

Figure 1.4: Penrose Kite (left) and Dart (right), with vertices colored to enforce
matching rules.

analog to the two-dimensional Penrose tiles, thereby furthering the modeling of
three-dimensional quasicrystals. Our research seeks to better understand the
properties of two-dimensional tilings, in hopes that the concepts can be applied
to their three-dimensional counterparts.

1.3 Penrose Tilings

Returning to two dimensions, we will examine Penrose tilings more carefully.
Recall that Penrose discovered a set of only two tiles that tile a plane aperiodi-
cally [Pen74]. While he discovered more than one set of tiles that does this,1 we
will use the set composed of “Kites” and “Darts”, which are names for the pro-
totiles shown in Figure 1.3.2 At first glance, the tiles do not appear to guarantee
aperiodic tilings, as they can clearly be fit together to form a rhombus, which
would tile the plane in a periodic fashion. Therefore, there are “matching rules”
that dictate the ways that the Kites and Darts fit together. These rules prevent
the formation of rhombi. The simplest way to enforce the matching rules is to
decorate, or mark, the vertices of the prototiles as shown in Figure 1.3. We aug-
ment the earlier side-to-side requirement in tilings to also require the matching
of these markings. Following these rules will ensure that a legal Penrose tiling
is being constructed.

If these matching rules seem like an unnatural restriction, there is another
way to think about them. One can imagine that instead of decorating the
vertices, notches were cut out of the sides of the tiles to ensure that the tiles
only fit together in certain ways. This too would force aperiodicity, and it
would be based solely on the shapes of the tiles. However, since such a “jigsaw”
approach makes our diagrams harder to read, we will use decorative matching
rules to keep our prototiles as simple as possible.

To prove that his tiles completely tile the plane, Penrose used two processes
that Conway calls inflation and deflation [CL90]. Simply put, inflation is the
process of combining prototiles in such a way that they form new tiles that
are larger versions of the original prototiles. Deflation is just the opposite—

1“Thin” and “thick” rhombi form the other common set of prototiles.
2Unless otherwise noted, all figures are drawn to scale.

CHAPTER 1. INTRODUCTION 5

taking tiles and dividing them into smaller tiles. Put another way, inflation and
deflation on a tiling is similar to iterating over a self-similar fractal. As one
“zooms in” (or out), similar structures appear on different scales. Penrose uses
this property of his tilings to show that any arbitrarily sized two-dimensional
surface may be covered by a legal Penrose tiling.3 Briefly, the proof works as
follows: suppose we want to cover an arbitrary-sized disc in two-dimensional
space. We simply select a Penrose tile that is large enough to cover the whole
disc, forming a Penrose tiling composed of a single tile which covers the disc.
Finally, we repeatedly inflate the tile until the sub-tiles are at the scale that we
desire. Since we can cover a disc of any size with a Penrose tiling, if we allow
the disc to become infinite in size we find that a Penrose tiling can tile the entire
plane.

1.4 Legal Tilings

A legal Penrose tiling is one where the tiles have been fit together with no gaps
or overlaps, and also one where no matching rules have been violated. A legal set
of Penrose tiles is set of tiles that form a finite subset of a legal Penrose tiling.
In any legal set of Penrose tiles, the lines that compose the tiles intersect at the
vertices of the tiling. There are only a few configurations of tiles that can form
around any vertex in a legal Penrose tiling. More specifically, Grünbaum [GS87]
proves that there are only seven, and these seven configurations are shown in
Figure 1.4 (the names are those used by Conway).

Because there are only certain legal vertex configurations, we can say that
a tile is forced if there is a partial vertex configuration in a tiling that only
one tile could possibly fill. Because a Penrose tiling covers the entire plane,
if we are given any legal set of Penrose tiles it is always possible to add more
tiles—one at a time—and continue forever to tile the plane. However, we cannot
add tiles in a random or haphazard way; we must choose where and which tiles
to add carefully to prevent problems from developing later in the tiling. The
aforementioned forced tiles help us complete tilings, as we know that we can
place tiles in those spots without affecting the legality of the tiling.

Socolar [Soc91] developed rules that would allow a defect-free tiling to always
be generated, using only information available locally at the vertex one wished to
add a tile. His method involved placing new tiles adjacent to an already existing
patch of tiles (as a base case, one starts with a single tile). If there exists a space
along the perimeter of this patch of tiles where a tile would be forced, we place
the forced tile there. When there are no more forced tile positions, methods are
provided to add tiles to the patch that will ensure consistency with the tiling
rules. Once new tiles are added, more forced positions emerge, and the tiling
can continue to be grown.

Socolar’s methods were primarily motivated by a desire to relate Penrose
tilings to quasicrystals. When physical crystals grow, we have no reason to
believe that they encode any of the ultimate structure they are creating. Thus,

3For a rigorous proof, consult Grünbaum [GS87].

CHAPTER 1. INTRODUCTION 6

Ace Sun

Star

Queen

KingJack

Deuce

Figure 1.5: The seven legal vertex configurations in a Penrose tiling.

CHAPTER 1. INTRODUCTION 7

any new growth must be made given only the information that exists at the
point where growth is occurring. For this reason, socolar restricted his rules so
that they involved only information that could be found locally at a particular
vertex. While his rules guarantee a legal tiling, they do not allow us to force a
tiling to take any particular shape. If we wanted to grow a tiling with, say, a Kite
forced at a specific point in the plane, we could not do so without first generating
a tiling that forced the Kite and then recording all the “decisions” that forced
that particular tile. Yet, if an analysis of tilings is performed, patterns clearly
emerge that suggest an underlying structure to Penrose tilings that are not
based solely on local rules.

It is these non-local rules which will allow us to analyze Penrose tilings on
a much larger scale, and also to allow us to manipulate and study them with
greater ease.

Chapter 2

Background for Research

Penrose tilings are interesting to researchers in several fields for several different
reasons. Regardless of the field of study, however, being able to easily manipu-
late and study Penrose tilings is a universal concern. Although Penrose tilings
are infinite in nature, we would like to be able to store them in a finite device,
such as a computer. This research attempts to discover some of the underlying
structure of Penrose tilings, so that the tilings can be stored and manipulated
as efficiently as possible.

In addition to being able to store tilings, this research also aims to learn
more about constructing the tilings themselves. Because we are reducing an
infinite number of Penrose tiles to a finite amount of information, there will
necessarily be some computation required to generate the information that is
not explicitly stored, as is usually the case in such situations. This research will
investigate methods of constructing Penrose tilings for study and research.

This work seeks to expand directly on the work of Linden Minnick [Min98]
by searching for a general algorithm to find the tiles forced by arbitrary patches
of tiles, and also a method to regenerate a complete tiling when given only
the minimal information needed to represent the tiling. Algorithms will be
developed and implemented in software to aid in this task.

2.1 Ammann Bars: A Non-Local Aid

Socolar noted that his rules were in agreement with what are called Ammann
bars (or Ammann lines). Ammann bars are markings that can be superimposed
on tiles and that verify the matching rules. A set of Penrose tiles with Ammann
markings are shown in Figure 2.1. When tiles are placed adjacently, the adjacent
Ammann bars must be collinear. The final result, in an infinite Penrose tiling,
is that the Ammann bars form infinitely long parallel lines. Because of the
different orientations of the tiles, there are actually five “sets” of Ammann bars,
where a “set” is a group of lines that are all parallel to one another. The five
sets in a Penrose tiling are rotationally separated by angles that are multiples

8

CHAPTER 2. BACKGROUND FOR RESEARCH 9

Figure 2.1: Penrose Kite (left) and Dart (right) with Ammann markings.

of 72◦. This has the added benefit of reinforcing the idea of isohedral symmetry
in the tiling.

Ammann bars can also be thought of as a way of placing Penrose tiles. We
can imagine drawing the Ammann bars onto the plane first, and then putting
down Penrose tiles that agree both with the other tiles and with the Ammann
bars. If one has five complete sets of Ammann bars in a plane, then the intersec-
tion and spacing of those lines will force the Penrose tiles into specific locations,
because the tiles must match the lines in the ways shown in Figure 2.1. In
this way, the Ammann bars become the important part of the tiling, and the
Penrose tiles become the decorations. If the Ammann bars can be generated so
that they force legal tilings, then the Penrose tiles impart no new information.

In fact, the Ammann bars can be generated so that they force legal Penrose
tilings. Each set of parallel Ammann bars in a legal Penrose tilings forms what
Conway calls a musical sequence. A musical sequence is a set of parallel lines,
where each line must be separated from its neighbor by one of two specific inter-
vals. More precisely, the distance between lines can be either a short distance,
or a long distance. The short and long distances themselves are related in the
following way:

Let |L| and |S| stand for the length of a “long” (L) and “short” (S) interval,
respectively. Let #L and #S stand for the number of “long” and “short”
intervals, respectively, in a Musical sequence. Grünbaum [GS87] has shown
that if n is the total number of intervals in the musical sequence, then

lim
n→∞

#S
#L

≈ |S|
|L|

=
1
τ

τ is the Golden Mean, which is an irrational number1 whose precise mathe-
matical definition is 1+

√
5

2 . The number has been known since at least the time
of the ancient Greeks, and it is often found in nature [Dis59].

This “golden” relationship hints at a pattern in the sequence of intervals.
In fact, the sequence of intervals between lines is also aperiodic, though in one
dimension instead of two. And just like Penrose tilings, there are “legal” ways
to arrange the intervals between bars. A sequence can be checked for legality

11.618033988749894848204586834365638117720309179805762862135448622705260462 . . .

CHAPTER 2. BACKGROUND FOR RESEARCH 10

through several different means, many of which are outlined by Minnick (see
below).

Assuming one knows how to generate legal sequences, one would find that
the pattern of L’s and S’s does not repeat periodically. In generating musical
sequences, certain choices of intervals cause certain bars to be forced at a spe-
cific distance away from the other bars in order to preserve the legality of the
sequence. Thus, we also have a concept of forced and unforced bars, just as we
do forced and unforced tiles in a Penrose tiling.

By generating Ammann bar sets and intersecting them in the plane, it should
be possible to generate Penrose tilings. Given this approach, solving the prob-
lems of musical sequences must be completed before attempting to solve the
problems of Penrose tilings.

2.2 Minnick’s Thesis

Minnick [Min98] combined the techniques described above so that knowledge
about the empire of tiles could be expanded. The empire of a tile or set of
tiles is the group of tiles that are forced by the presence of the initial set.
Socolar’s rules were insufficient to describe the empire of tiles because they only
considered local conditions. His rules would show all locally forced tiles at any
given vertex, but did not attempt to show nonlocal tiles which might also be
forced. Grünbaum and Shephard performed a brief analysis of the relationship
between Ammann bars and forced tiles in an attempt to find tiles that were
forced non-locally. They noted that certain shapes formed by the intersections
of Ammann bars always forced certain tile configurations. They also published
figures showing some of the non-local tiles that were forced. While the known
empire had been expanded, it still was not complete.

Minnick expanded on these empire-finding efforts. First, she described sev-
eral ways to generate legal musical sequences, and provided proofs for the meth-
ods. The method we rely on in this paper relies on her geometric method to
generate and verify musical sequences. The geometric method always allows for
the storage of a musical sequence (which is infinite) in a finite amount of space.
Additionally, it is easy to force arbitrary bars in the sequence, as well as check
arbitrary bars to see if they are forced.

Minnick also performed a close analysis of the Penrose tilings’ relationship
to the Ammann bars. She constructed a set of distances that related points
on the prototiles to the Ammann bars, and used these distances to compute
how certain sets of tiles would force sets of Ammann bars. She constructed
diagrams that showed how the Ammann bars would be forced around all seven
of the legal Penrose vertex configurations, and also found partial empires of these
vertex configurations. Finally, she demonstrated that certain configurations of
tiles directly forced Ammann bars that did not touch the tiles. This result
was important because it demonstrated that there was a relationship between
Ammann bars and Penrose tiles that worked over a distance, rather than the
tiles only forcing bars that passed through the tiles themselves. Her results also

CHAPTER 2. BACKGROUND FOR RESEARCH 11

suggest that there exist more rules for Penrose tilings that may depend on even
larger groups of tiles.

Minnick constructed a high-level algorithm for finding part of the empire of
an arbitrary patch‘of tiles. She implemented the algorithm by hand for certain
vertex configurations to demonstrate that her methods would find forced tiles
that had not yet been discovered. She did not come up‘with a general implemen-
tation of her algorithm, however, and so could not generate arbitrary empires.
Additionally, while her algorithm should generate the empire of a set of tiles, it
assumes that we know all the forcing rules that might exist for Penrose tilings.
We do not know if we possess all the forcing rules, so Minnick’s algorithm does
not necessarily produce complete empires yet.

2.3 Proposed work

The efforts described in this work seek to build directly on Minnick’s work.
We will attempt to implement her general algorithm in a systematic way, so
that we can find the empire of any arbitrary patch‘of tiles. While Minnick has
provided an excellent starting point, her algorithms are described at a very high-
level. Much work must be done to actually implement them in a programming
language.

Specifically, the basic functions that need to be written in software are these:

1. Representation of a musical sequence, with the ability to find and force
arbitrary bars,

2. Interaction of five musical sequences in a plane, as they would appear in
a Penrose tiling,

3. The ability to find intersections of forced musical sequence bars,

4. The ability to find patterns in a field of intersection points,

5. The ability to analyze the patterns and fill in missing or incomplete infor-
mation, and

6. The ability to draw the forced Penrose tiles on top of the musical se-
quences.

With the implementation of the algorithms, we should be able to generate
partial empires of arbitrary sets of tiles (partial because we do not know all the
forcing rules yet). Using this as a tool, we can generate empires that would be
too difficult to construct by hand, and study these empires for new patterns and
rules. We hope to better understand Penrose tilings, and find even better ways
to construct and store them using computers.

Chapter 3

Musical Sequences

Musical sequences are one-dimensional aperiodic structures. In many ways they
are the one-dimensional analog to Penrose tilings because they contain similar
properties of similarity, inflation, deflation, and, of course, aperiodicity. Musical
sequences can be represented in a number of different ways, depending on the
context. to prevent confusion, we will use a consistent notation for all musical
sequences, and introduce the meaning of the notation at the appropriate times.

3.1 Theory

One possible representation of a musical sequence is a string over the two-symbol
alphabet {L, S}. The symbols in a musical sequence cannot be arranged in an
arbitrary fashion; there are certain orderings of these symbols that are not
allowed.

3.1.1 Inflation

Using this symbolic representation of a musical sequence, the simplest musical
sequence is the empty string ε. A more useful trivial string is the single symbol
S, which is a valid musical sequence by definition. Starting with this single S, a
new musical sequence can be built by using a process called inflation. Inflation
means rewriting all the symbols in a musical sequence using a parallel rewriting
scheme called an L-system. The rewrite creates a longer string with all of the
symbols having been rewritten simultaneously. The rewriting rules for inflation
are:

L → LS

S → L

Note that the rules must be applied in parallel to all of the symbols in the
string. A single L cannot become LL during one rewrite, but must rather go
from L to LS in one step, and then from LS to LSL in the next step. Another
way to think of the rewriting rules is by imagining that the symbols represent

12

CHAPTER 3. MUSICAL SEQUENCES 13

S
L
LS
LSL
LSLLS
LSLLSLSL

Figure 3.1: Inflation of a musical sequences, beginning with S.

rabbits: S is a baby rabbit, and L is an adult rabbit. In every unit of time, all
of the adult rabbits each create a single new baby rabbit (L → LS), while at
the same time any baby rabbits mature into adults (S → L). All the rabbits
change simultaneously, or “in parallel.”

It is always possible to inflate a musical sequence to create a longer mu-
sical sequence because the validity of a musical sequence is not changed by
inflation [GS87]. Therefore, if we start with a valid musical sequence, we can
repeatedly apply the inflation rules to obtain a musical sequence of arbitrary
length. Because the single symbol S is a trivially valid musical sequence, we
may begin with it and inflate repeatedly to obtain other valid musical sequences.
It is important to note that not all finite portions of musical sequences can be
generated in this way unless the sequence generated has infinite length. Only
an infinite musical sequence will contain all finite substrings, much in the same
way that only an infinite Penrose tiling will contain all finite patches of Penrose
tiles.

Figure 3.1.1 shows a sequence that is inflated from the single symbol S. Note
that after the first rewriting, this sequence is exactly the same as one beginning
with the single symbol L.

3.1.2 Musical Sequence Rules

After a moment of careful study we see that there are never any consecutive S
symbols in a musical sequence, nor are there ever more than two consecutive L
symbols. These are rules of any musical sequence, which will be referred to as
consecutive symbol rules. They may be stated as follows:

Theorem 1. No valid musical sequence may have more than one consecutive
S symbol.

Theorem 2. No valid musical sequence may have more than two consecutive
L symbols.

Proof. to show that there can never be consecutive S symbols, we can think of
the L symbols as “generators” for the sequence. Only L symbols create new
symbols, and they do so in a very specific manner. L symbols create a single
new S symbol to the right of the L symbol during every rewrite of the string.
Additionally, all extant S symbols turn into L symbols during every rewrite.

CHAPTER 3. MUSICAL SEQUENCES 14

These two rules work together to prevent two S symbols from ever being next
to each other. Because S symbols are always created to the right of a L symbol,
there is no way for two L symbols to produce adjacent S symbols during the
same rewrite; one of the L symbols must necessarily interrupt the S symbols.
Because all S symbols become L symbols during every rewrite, there is no way
for two S symbols created during different rewrites to be next to each other;
one would have been changed to a L before (or during) the other’s creation.

Once we have shown that there cannot be consecutive S symbols, showing
that there cannot be more than two consecutive L symbols becomes quite easy.
As demonstrated above, L symbols always generate a new S symbol, so L
symbols will always insert a S between themselves after a rewrite. The only
reason why there exist consecutive L symbols at all is because the S symbols
become L during on rewrite, but do not produce a new S. During this single
step, a L can exist without a S next to it. However, in the next step, this
new L will begin producing S symbols, thus preventing further accumulation
of consecutive L symbols. Since there cannot be consecutive S symbols (shown
above), we can have at most two consecutive L symbols: one which just changed
from a S to a L during this rewrite, and one to it’s right which has been a L
prior to this rewrite. Any other L would produce a S (thus interrupting the
consecutive L symbols), and we know that another S symbol is impossible.
Thus, there cannot be more than two consecutive L symbols in a valid musical
sequence.

The inflation rules, along with the consecutive symbol rules, can be used to
show the relative frequency of the two symbols. We know that for every S there
must be at least one L, so we would expect the ratio of the number of S symbols
(—nS) to the number of L symbols (#L) to be less than one. Additionally, we
know that there cannot be more than two consecutive L symbols, so we would
expect the same ratio to be greater than 1

2 . In fact, Grünbaum and Shephard
have shown that for any infinite musical sequence

#S
#L

=
1
τ

= (1− τ)

These relationships hold true in the limit: when the sequence has infinite length
we say the sequence is prototile balanced1 and these relationships hold. In finite
portions of musical sequences, these relationships are approximated, but not
perfect.

These rules, when combined with our notion of inflation, give us a tool
that can confirm the validity of musical sequences. By looking at a string and
verifying that it does not violate the rules of consecutive symbols, we know that
the string is possibly musical. Another step is required, however, to verify that
the string is truly musical.

1prototile balanced implies that the limit of the ratio is finite and nonzero

CHAPTER 3. MUSICAL SEQUENCES 15

LSLLSLSL
LSLL
LS
L
ε

Figure 3.2: Deflation of the musical sequences from Figure 3.1.1.

3.1.3 Deflation

Because all musical sequences can be constructed from a single symbol, we
should be able to trace the path that created any valid musical sequence. If we
can, in a sense, “run inflation backwards,” then we can verify a musical sequence.
To do so, we use rules which define deflation, the opposite of inflation:

LL → S

S → L

L → ε

Deflation is exactly like inflation in that the rewriting rules must be applied
in parallel to the entire string, and only one rule may be applied to a group
of symbols in a single rewrite. In other words, we cannot rewrite LL to S and
then rewrite S to L all in a single rewrite.

Deflation always preserves the validity of a musical sequence [GS87], and
this allows us to verify musical sequences. Given an arbitrary string, if we can
repeatedly deflate it until we are left with the empty string ε, then the original
string must be a valid musical sequence. At no time during the deflations can
the string violate our consecutive symbol rules; if it does, then the string is not
a musical sequence. If we did not make sure that the string always obeyed our
consecutive symbol rules, then we could accidentally deflate an invalid string
into a valid one. For example, LLL could be deflated to S, thus transforming
an invalid string to a valid musical sequence. We must therefore check the
validity of the musical sequence after each step of the deflation.

To illustrate this point, we will verify the musical sequence constructed in
Figure 3.1.1. Because the string was built using only inflations from the trivial
(valid) case, the string must be a valid musical sequence. Figure 3.1.3 clearly
shows that the string does deflate to the empty string ε, and the reader may
readily verify that none of the intermediate strings violate our consecutive sym-
bol rules.

As for invalid strings, consider the two invalid strings in Figure 3.1.3. The
one on the left is clearly invalid because it violates our rule of having no more
than two consecutive L symbols. The one on the right, however, is more trou-
blesome. The string deflates several times before our consecutive symbol rule is
violated. This demonstrates that verifying a string requires deflating it until all
that remains is the empty string; if we stop before that point then there may

CHAPTER 3. MUSICAL SEQUENCES 16

LSLLSLLL
(More than two consecutive
L symbols)

LLSLLSLL
SLSLS
LLL
(More than two consecutive
L symbols)

Figure 3.3: Examples of invalid musical sequences. The left example is trivially
invalid, but the right example requires several deflations before the flaw becomes
apparent.

be an inconsistency in the sequence that will not become apparent until further
deflation.

3.1.4 Forcings

The consecutive symbol rules place restrictions on which patterns of symbols
may exist in a musical sequence. Certain sequences cannot exist because they
cannot be deflated. The sequences that can be deflated completely appear to
contain patterns of symbols, with the patterns being the result of certain symbol
orderings being disallowed. For example, in a musical sequence we might see a
lot of LL pairings, but no SS pairings, because the sequence rules allow for the
former and disallow the latter. These patterns give the appearance of forcings
in the musical sequence, because certain symbols always follow others. Consider
the sequence below:

. . .LSLL . . .

If we were to add a new symbol to the right-hand side of this musical se-
quence, the only symbol we can use is a S, because adding a L would violate the
rule preventing more than two consecutive L symbols. Because only one sym-
bol can possibly be used at this point in the musical sequence, we say that this
symbol is forced. Essentially, the existing symbols combined with the sequence
rules demand the appearance of an S.

Forcings are much more than trivial rule-following. As Figure 3.1.3 showed,
flaws in a musical sequence may not become apparent until several deflations
have been performed. Because of this, placing one symbol may affect the place-
ment of another distant symbol on the sequence, even though they do not appear
to have any relationship to each other. As deflation s are performed, symbols
that are far apart are brought closer together until they are eventually near
enough to affect each other through the consecutive symbol rules. Because of
this, placing a symbol in an infinite sequence forces not only adjacent symbols,
but also an infinite number of non-local symbols.

CHAPTER 3. MUSICAL SEQUENCES 17

L S L L S L S L

Figure 3.4: The musical sequence LSLLSLSL represented using Ammann bars.
The intervals between bars are marked with their symbolic equivalents to show
the relationship between Ammann bars and pure symbolic musical sequences.

3.2 Ammann Bars

Now that we have defined the basic properties of musical sequences, we will
remove one layer of abstraction and discuss Ammann bars. Ammann bars are
musical sequences expressed as sets of parallel lines rather than as symbolic
strings. Instead of using L and S to represent the two possible states in a
musical sequence, we use the space between adjacent parallel lines to encode
this information. In a sequence of Ammann bars, the space between any two
adjacent lines can only be one of two lengths. One length is called long and the
other is called short. As one would expect, long intervals are analogous to the
L symbol the string representation, and short intervals represent S symbols.

As an example, —figfig:base-ammann shows the musical sequence from Fig-
ure 3.1.1 as a sequence of Ammann bars. It now becomes convenient to speak of
intervals between bars, rather than symbols. For consistency, however, we will
refer to these intervals using the familiar symbols L and S. Note that sequences
of Ammann bars are musical sequences; the bars simply represent the sequences
in a graphical fashion. Throughout this work, we will refer to “a sequence of
Ammann bars,” to denote that it is different from our symbolic representation
used earlier. The reader should simply be aware that a valid arrangement of
Ammann bars always implies a musical structure.

Ammann bars are particularly useful when we visualize the forcing concept
discussed earlier. When a forcing occurs in a sequence of Ammann bars, two
things are forced. First, a particular Ammann bar is forced to be in a certain
position relative to all the other forced Ammann bars. Secondly, the interval
between all these forced bars is forced to be a certain length: either L or S.
While these are really two different ways of describing the same phenomenon,
it is sometimes more convenient to speak of forcing bars or forcing intervals,
and we will freely switch between the two different terms. We will say that an
interval is forced when we are speaking about the relative spacing of bars, but
the absolute positions of the particular bars are not important. We will say
that a bar is forced when we are forcing a specific bar into a position, but the
interval it forms is not important.

Figure 3.2 illustrates these two ways of forcing. We can force bars in any of
the five configurations shown at the top of the figure if we desire specific bars

CHAPTER 3. MUSICAL SEQUENCES 18

to be in specific places. The last portion of the figure shows that we can also
just force the two bars on the left and right sides of the figure, thus forcing the
interval between them to be a certain distance. In this case, we get an interval
of a specific length, and the actual ordering of bars in between does not matter.

3.3 Five-Fold Interactions

Ammann bars are two-dimensional; they are sequences of parallel line segments
with space in between them. Additionally, the long and short intervals between
the bars have a relationship between them. In a sequence of Ammann bars,
a long interval is defined as being τ times as long as a short interval. Once
we have picked an arbitrary length for either a long or short interval, all other
distances in a sequence of Ammann bars are known. If we use |L| to denote the
length of a long interval, |S| to denote the length of a short interval and n to
denote the total number of intervals in the sequence, then we can sum up‘what
we know about Ammann bars as follows:

lim
n→∞

#S
#L

≈ |S|
|L|

=
1
τ

= (1− τ)

Ammann bars are more than just graphical representations of musical se-
quences. They are the basis of an underlying pattern for Penrose tilings. In
any Penrose tiling, five sequences of Ammann bars interact in the plane, dic-
tating where the tiles should be placed. Figure 3.3 shows how the tiles and
bars interact. The five Ammann bar sequences are arranged at 72◦ angles. The
intersections of the bars in the sequences define where the tiles in the Penrose
tiling must go.

The direct relationship of Ammann bar position to Penrose tile position also
links forced Ammann bars to forced Penrose tiles. If we force certain bars in
the five sequences of Ammann bars that comprise a Penrose tiling, then we
have forced the positions of actual tiles in the tiling as well. This property is
what our research is based on: by exploiting the underlying structure that the
Ammann bars provide, we can determine the positions of forced tiles, and thus
the empires of Penrose tiles.

3.4 Extended Theory

In the next chapter we will discuss in depth the relationship of Ammann bar for-
mations to Penrose tile placement. For the moment, assume that some method
of placing Penrose tiles on top of Ammann bars exists. If this is the case, then
finding the empires of tiles can be outlined as follows:

1. Find the Ammann bars forced by our initial set of tiles.

2. Find the Ammann bars that are in turn forced by these initial Ammann
bars.

CHAPTER 3. MUSICAL SEQUENCES 19

L

L S L L S L

L S L S L

L

L S L LS L

L S L SL

(4L +2S)

LS L LS L

Figure 3.5: The distance between two Ammann bars, represented in terms of L
and S. Above, all the possible orderings of symbols that fit between two bars
forced at a distance (4L+2S) from each other. Notice that the middle bar (dark
grey) always appears in the same place, even though we did not explicitly force
its position. This bar is forced.

CHAPTER 3. MUSICAL SEQUENCES 20

Figure 3.6: An example of how Ammann bars and Penrose tilings interact. On
the top, five sequences of Ammann bars. On the bottom, a Penrose tiling. The
center shows the two superimposed.

CHAPTER 3. MUSICAL SEQUENCES 21

Zeroth Bar Zeroth Bar

Axis Of Sequence

Figure 3.7: An unforced musical sequence represented as Ammann bars, and a
musical sequence with a single interval forced.

3. Place the deducible tiles on top of these newly forced Ammann bars.

At a very high level, that is what our research deals with. In the next chapter
we will discuss the first and third s outlined above, which relate the Ammann
bars to the tiles. Right now, what interests us is finding all the Ammann bars
that are forced by other Ammann bars.

3.4.1 Forcing Arbitrary Ammann bars

A good way to imagine a musical sequence represented by Ammann bars is by
thinking of the sequence as initially unforced, as shown in Figure 3.4.1. In this
state, there is a single Ammann bar, called the zeroth bar. This bar is used as
a point of reference only; it does not force anything by itself because forcing
requires two bars (two bars enclose an interval, and intervals are what represent
the musical sequence). This zeroth bar can be thought of as the center of
the sequence, with the remainder of the sequence continuing infinitely in either
direction from the center.

Suppose that we now force a new bar in the sequence. By adding a bar,
we have forced an interval somewhere in the set to be a certain length. As
demonstrated earlier, a forcing in a musical sequence causes an infinite number of
other forcings to occur. But how do we know which intervals are forced? Forced
intervals are not trivial, because long-range defects in the musical sequence may
not become apparent until several deflations have been performed. so far, we
have only described a method of determining whether a sequence is valid or not.
We have not described a way to force arbitrary intervals, because the methods
we have discussed so far (inflation, deflation, and consecutive symbols) are all
local, and do not adequately deal with long-range effects.

3.4.2 Minnick’s Work

Minnick [Min98] researched arbitrary forcings in musical sequences, and refined
one algorithm in particular. The algorithm uses a geometric representation

CHAPTER 3. MUSICAL SEQUENCES 22

1 2 3 40

1

2

3

4

5

6

7

Figure 3.8: An empty integer lattice.

of the musical sequence, and allows for the location and creation of arbitrary
forcings in a constant amount of time.

To visualize the algorithm, we begin with an integer lattice. This lattice
is comprised of a Cartesian coordinate system, with a point placed at every
integer pair. A lattice is shown in Figure 3.4.2. The x-axis integers represent
bar numbers, with the zeroth bar at the x value 0. The space between x-axis
integers represents the intervals between bars. Thus, the bar immediately to
the right of the zeroth bar is at (x = 1), and the first interval of the sequence is
bounded by the bars at (x = 0) and (x = 1).

Now we draw a line ` through the integer lattice, with slope τ and y-intercept
between 0 and 1, as shown in Figure 3.4.2. For every x value on the lattice, take
the y value of the line `, and truncate it to an integer value. Because the slope of
` is τ , which is between 1 and 2, the difference between truncated y values will
be either 1 or 2. A difference of 1 represents a short interval, and a difference of
2 represents a long interval. Figure 3.4.2 shows this translation from a geometric
line to a symbolic musical sequence.

Therefore, a single line of slope τ defines an entire musical sequence in this
geometric system. If we want to find a particular interval, we need only to
determine the difference between two y values on the integer lattice. For ex-
ample, if we wanted to find the interval distance between the 3rd and 4th bars
in —figfig:lattice-conversion, we would compute the truncated y values at bar
3 (4) and at bar 4 (6) and take the difference (2). The difference tells us that
the interval is long. Note that this calculation depends only on the y-intercept
of the line; no other information about surrounding intervals is required.

The example described above shows a completely forced musical sequence.
All of the values are determined by the line `, and all of these values are forced.
In order to represent an unforced sequence, we must introduce some kind of

CHAPTER 3. MUSICAL SEQUENCES 23

1 2 3 40

1

2

3

4

5

6

7

(1-0)

1

S

(3-1)

2

L

(4-3)

1

S

(6-4)

2

L

1 2 3 40

1

2

3

4

5

6

7

y-values:

y-values:

Interval Length:

Figure 3.9: Left: An integer lattice with a line of slope τ through it. Right:
The line with the y values truncated to integers. Bottom: the integer values
converted to interval symbols

CHAPTER 3. MUSICAL SEQUENCES 24

1 2 3 40

1

2

3

4

5

6

7

l
1

l
0

Figure 3.10: A lattice with two lines with slope τ `0 and `1, with y-intercepts 0
and 1.

uncertainty.
Minnick accomplishes this by using two lines instead of one. Returning to

our integer lattice, suppose we have two lines `0 and `1, both with slope τ .
Let us also suppose that the y-intercept of these two lines initially differ by
exactly 1: `0 has a y-intercept of 0 and `1 has a y-intercept 1. This is shown
in Figure 3.4.2. These two lines effectively bound the set of all possible musical
sequences.

Under this representation, in order for a bar to be forced at any particular
x value, the truncated y value at that point must be the same for both lines `0
and `1. In this initial configuration, no bars are forced because any y value for
`0 will always be one less than the y value for `1.

To force a bar under this system, the y-intercept of one of these lines must be
changed. Changing the y-intercept causes the entire line to move, and moving
the line allows us to change the y value at any point. Only two changes are
possible: `0 can have its y-intercept raised, or `1 can have its y-intercept lowered.
Because of this, the y-intercepts of the lines are always moving closer together,
and in the limit they will become a single line with one y-intercept. When this
happens, we have a single line just like the one in Figure 3.4.2, and this single
line defines a completely forced musical sequence. But so long as the two lines
are different in some way, there are some bars in the musical sequence that are
not forced.

When we force a bar, the intercept of one of the lines is moved just enough
to force the y value at that bar to agree with that of the other line. Consider
Figure 3.4.2: after truncation, `0 has a y value of 4 and `1 has a y value of 5.
In order to force this bar, we must either raise `0 until its truncated y value

CHAPTER 3. MUSICAL SEQUENCES 25

1 2 3 40

1

2

3

4

5

6

7

l
1

l
0

1 2 3 40

1

2

3

4

5

6

7
l

1

l
0

Both Round To 5 Both Round To 3

Raising l
0

Lowering l
1

Sequence looks like: | (S+L) | L | (S+L) | Sequence looks like: | (S+L) | (S+2L) |

Figure 3.11: Forcing a bar in the integer lattice.

becomes 5, or we must lower `1 until its truncated y value becomes 4.
Raising `0 has the effect of making the interval between the bar we are

forcing and the bar preceding it longer. Long intervals are created when two
truncated y values differ by two instead of one. In order to differ by two, the
latter of the two y values must be as high as possible, so that when it is truncated
it is two more than the truncated y value of the bar before it. Thus, to make
the y value as high as possible, we should raise `0.

Using similar reasoning, lowering `1 has the effect of making the interval
between the current bar and the bar preceding it shorter. Short intervals are
created when two truncated y values differ by one, and this is achieved by mak-
ing the y value of the current bar as low as possible. Thus, we should lower `1
to make a certain interval shorter.

Using this method, we can force an arbitrary bar to be a relative distance

CHAPTER 3. MUSICAL SEQUENCES 26

away from other bars. Note that we are not guaranteed to have an interval of
the desired length merely by moving `0 or `1. Moving a particular line only
causes the sequence to expand with a greater number of short or long intervals;
the legality of the sequence cannot be violated by moving one line or another.

Minnick’s system gives us the power to deal with forcings in a simple manner,
as well as giving us the ability to represent musical sequences in a compact form.
The geometric representation uses only two lines to represent an entire musical
sequence, yet these lines are sufficient to tell us where any, and all, forcings
occur, as well as allowing us to define new forcings of our choosing. Because
Penrose tilings can be represented as musical sequences in the form of Ammann
bars, Minnick’s algorithms form the base of our work to find the empires of
Penrose tiles.

3.5 Pseudo-Code Implementation

Minnick’s geometric method is fairly straightforward, though actually imple-
menting it requires some work. The two major problems in the implementation
phase are efficiency and precision. We do not want to lose the efficiency of the
algorithm; as described above the forcing operations appear to take only con-
stant time. Since our work will rely heavily on these operations, we need to
make them as efficient as possible. Precision is important because the computer
is a finite device, whereas the conceptual algorithms assume infinite precision.
In the algorithm, the lines `0 and `1 have y-intercepts between 0 and 1. Even
small errors in these intercept values (caused by rounding in the computer)
could cause certain bars to be forced when they should not be, or bars that
should be forced to no longer be forced. For this reason, we want to find some
way of storing the positions of lines `0 and `1 using integer values.

To help with our implementation, we can modify the algorithm slightly so
that it more readily adapts for use in a computer program. Our first step is
finding a representation of the lines `0 and `1 that are as accurate as possible.
Instead of storing the y-intercepts of the lines (which are real numbers), we can
store the lines in a point-slope form. Point-slope form requires that we know the
slope of a line and one point that the line travels through. Because we always
know the slope of the lines is (τ), we can write an equation to find an arbitrary
y value yi for any arbitrary x value xi:

yi = yint − ((xi − xint) ∗ τ)

We always know one point (xint, yint) because the lines are always raised or
lowered so that they truncate to a certain value. The best way to make a line
truncate to a particular integer value is to simply force the line to pass through
that integer value. In Figure 3.4.2, raising `0 to intersect (3, 5) is the smallest
amount we can move `0 and still force the bar. To raise `0, instead of raising
the y-intercept, we can just say that the line now goes through the point (3, 5).

By storing a point that the line intercepts, we get to use integer values for
our line representation, which is preferable to using real coordinates to store the

CHAPTER 3. MUSICAL SEQUENCES 27

truncateClosed Given a value v, returns a new integer i such that i ≤ v.

truncateOpen Given a value v, returns a new integer i such that i < v.

Figure 3.12: Definition of two truncation functions.

y-intercepts. Our line representation is now as accurate as our choice of τ for
the slope of the line; all other values are perfectly precise. The only problem
with this system is dealing with the line `1. When we raised the line `0 to an
integer, we knew that it would truncate to that same integer (which was the
property we wanted). However, when we lower `1, we want to set its value so
that it truncates to the next-lowest integer. Returning again to Figure 3.4.2,
if we chose to lower `1 to force it to truncate to 4, we would want to lower `1
to be just below the value 5 (4.999. . .). That way, the next time we computed
the y value for `1, it would truncate to 4, which is what we want. However,
the value 4.999. . . is not an integer, and we additionally cannot represent “the
number that is closest to 5 but still less than 5” in a finite computer system.
How then, do we represent the known intersection point of line `1?

We can overcome this problem by redefining how we truncate the y values of
the two lines. We always know which y value we are truncating, so the easiest
solution would be to treat truncations from the two lines `0 and `1 differently.
Let’s create two functions truncateOpen and truncateClosed which both truncate
y values. The qualifiers “open” and “closed” refer to the mathematical terms
used when describing intervals. truncateClosed truncates a value simply by
removing the non-integer component of the value. truncateOpen also truncates a
value in this way, unless the value is already an integer. If the value is an integer,
it returns (value− 1). The two truncate functions are defined in Figure 3.5.

Having defined these two functions, we now have a precise method of rep-
resenting the two lines. We store the lines in point-slope form, using integer
coordinates for the points. When we want to determine if a bar is forced, we get
the y values for the lines `0 and `1, which we’ll call y0 and y1. To compare these
values, we first truncate them, using truncateClosed for y0 and truncateOpen
for y1. Whenever we want to force a bar, we set the y value of the intersection
point to the desired value for `0, or to one more than the desired value for `1.
This will ensure that when the value is truncated, it will fall to the correct value.

Figure 3.13 shows an implementation of the geometric representation of a
musical sequence. The functions ForceBar, which forces an arbitrary bar in
a musical sequence, and IsBarForced, which returns true if a particular bar
is forced in the musical sequence, are shown. These functions will be used
often when we begin to query sequences of Ammann bars to find the empires of
Penrose tiles.

CHAPTER 3. MUSICAL SEQUENCES 28

Start of Algorithm ForceBar

Input:

M, a musical sequence

xi, the x value of the bar to force, and

longer/shorter, whether the bar should be made longer or shorter

Output:

M, with bar xi forced.

Begin:

Store the y value of `0 at xi in y0

Store the y value of `1 xi in y1

Store truncateClosed(y0) in trunc0

Store truncateOpen(y1) in trunc1

if we are making a long interval

then raise `0 so that it intersects (xi, trunc1)

else lower `1 so that it intersects (xi, (trunc0 + 1))

End of ForceBar

Start of Algorithm IsBarForced

Input:

M, a musical sequence

xi, the x value of the bar to check

Output:

Returns boolean; true if the bar is forced, false if it is not

Begin:

Store the y value of `0 in y0

Store the y value of `1 in y1

Store truncateClosed(y0) in trunc0

Store truncateOpen(y1) in trunc1

return (trunc0 equal to trunc1)

End of IsBarForced

Figure 3.13: A pseudo-code implementation of the functions ForceBar and
IsBarForced.

CHAPTER 3. MUSICAL SEQUENCES 29

These algorithms give us the ability to quickly and easily deal with Ammann
bar forcings. The first part of our implementation is now complete. What
remains for us is to find the interactions between sets of Ammann bars in a
plane, and then use these interactions to find Penrose tiles.

Chapter 4

Forcing Rules

In a Penrose tiling, a forced tile is one that must be placed in a certain position
in order to preserve a legal tiling. Given an initial set, or patch of Penrose tiles,
the set of tiles that are forced by this patch are known as the empire of the
patch.

A patch can have both local and non-local tiles in its empire. Locally forced
tiles share an edge with the patch, or with another locally forced tile, such that
all the locally forced tiles are contiguous with the initial patch. These tiles
can be found by studying a patch and discovering all the tiles that cannot be
changed without affecting the legality of the tiling. Figure 4 shows the simplest
example of a local tile forcing. The tiles shown form what is called the Ace
configuration. It consists of a single Dart and two Kites adjoining it. There are
no other tiles that legally fit into the concave portion of the Dart, and so those
two Kites are always forced by the Dart.

We cannot realistically use an approach of trying all possible neighborhoods
in order to find non-local forced tiles. As we move farther and farther away
from the initial patch, the number of tiles whose positions would have to be
tried would increase geometrically. Finding a forced tile at a large distance
from the initial patch‘would take too long if the methods used were exponential
in nature.

Fortunately, we have a tool that will help us solve the non-local tile problem.

Figure 4.1: The Ace configuration: an example of local tile forcing.

30

CHAPTER 4. FORCING RULES 31

Figure 4.2: Penrose Kite (left) and Dart (right) with Ammann bars superim-
posed.

We know that Penrose tilings can be decorated by sequences of Ammann bars,
as in Figure 4. These decorations serve as an alternative to the matching rules
in a tiling.

We can think of the Ammann bars as conveyors of information. Because the
Ammann bars are infinitely long, they affect the infinitely long “strip” of the
tiling that they stretch through. When we force a new Ammann bar, this forces
an infinite number of Ammann bars elsewhere in the plane. Our problem with
the Penrose tiles was that we would have had to try all possible tiles to find the
forced ones. But we can find forced Ammann bars without needing to try all
the possible bar orderings, as we saw in the previous chapter. Because Penrose
tiles can be thought of as mere decorations on top of the Ammann bars, we can
convert Penrose tiles to Ammann bars, compute the forcings, and then convert
the Ammann bars back to Penrose tiles. An overview of this process is shown
in Figure 4. The initial set of tiles in (A) can be represented as the Ammann
bars in (B). But these Ammann bars force new bars, in accordance to the rules
discussed in Chapter 3. These new bars are shown in (C). If we now mark the
Ammann bars with Penrose tiles, we have new tiles that were not in our initial
set. These are the tiles that are forced by the initial patch, and are shown in
(D).

Our strategy now is to find exactly how the Ammann bars relate to the
Penrose tiles, so that we can begin with a patch of tiles, translate them to
Ammann bars, find new forced bars, and then draw any new tiles that may be
forced.

4.1 Finding Forced Shapes

Given a sequence of Ammann bars, we must be able to find portions of the
Ammann bars that have features that we are looking for. For example, a certain
arrangement of Ammann bars might represent a Kite, and we want to be able
to find objects like Kites so that we can draw them.

Any arrangement of Ammann bars that has a feature we are looking for is
called a pattern. We scan through the sequences of Ammann bars looking for
patterns, and when we have found them we can take appropriate action, such

CHAPTER 4. FORCING RULES 32

A B

D C

Figure 4.3: The four s in finding the empire of a patch of Penrose tiles, clockwise
from upper left: (A) The initial patch of Penrose tiles. (B) The Ammann bars
forced by the initial tiles. (C) The new Ammann bars forced by the initial bars.
(D) The new Penrose tiles overlayed on the new Ammann bars.

CHAPTER 4. FORCING RULES 33

Figure 4.4: An example of a false match, using insufficient information. On the
left, the Ace. On the right, the Queen. The bars in bold are shared by the two
configurations, and so are not sufficient to match a unique pattern.

as drawing an object or forcing a new bar.

4.1.1 Finding Unique Patterns

In order to classify sections of the Ammann bars correctly, we must ensure that
the patterns we are searching for are unique. Figure 4.1.1 shows two possible
tile configurations that have the same Ammann bar configuration. If we were to
match‘on this pattern, assuming it was an Ace, we might cause problems later
on if it turns out that the pattern was actually part of a Queen.

The easiest way to define unique patterns of Ammann bars is to look at the
intersections of the Ammann bars. This gives us a clear way to find distances,
as well as angles between certain Ammann bars. The intersections form shapes
that are similar to constellations in the night sky. In order to find a pattern, we
must look for points that are certain distances away from each other, and that
have lines through them that make certain angles with respect to each other.

To assist us with the pattern matching, it is helpful to think of the patterns as
being formed of points where Ammann bars intersect. All the sets of Ammann
bars have an orientation in the plane, so we can define the intersection points
as being between Ammann bars that have certain orientations relative to each
other. This will cut down on false matches because the additional information
provided by the Ammann bar orientation prevents us from matching patterns
that have the right shape but involve the wrong Ammann bars.

To create a pattern, we look at all the Ammann bars that are involved in
the feature we want to match. In the case of Penrose tiles we look at all the
Ammann bars that are involved with the tiles we are examining. We can then
find the smallest unique set of intersections of the Ammann bars and use this
as our pattern.

CHAPTER 4. FORCING RULES 34

4.2 Matching Patterns

Once we have constructed a library of patterns that we want to find, we must
devise an algorithm to actually locate the patterns for us. Because the Am-
mann bars can be rotated through angles that are multiples of 72◦, the search
algorithm must be able to find patterns that are rotated and translated, but not
scaled. Because of the self-similarity of Penrose tilings, patterns may exist that
have the right proportions but incorrect scale.

When we have found a match, we must also be able to accurately describe
where it occurs. We have to be able to say where the pattern was found, what
rotation it might have, as well as which Ammann bars are involved in the match.
The reason for the last condition is that we may need to force other bars that
are nearby, depending on what pattern we have matched. Knowing which bars
are involved in the match will help in finding the nearby bars that may also be
affected.

4.3 Forcing New Information

Some patterns may help us to add more information to a Penrose tiling. Suppose
that every pattern we match has some amount of unique information associated
with it that no other pattern possesses. Also suppose that not all of this infor-
mation is required to uniquely identify the pattern, and that the pattern can
exist without all of the information needing to be present. When this is the
case, we can match on the smallest amount of information possible, and then
fill in the missing information that we know must exist. Doing so augments the
tiling and allows us to possibly find more forced information without needing
more initial information.

As an abstract example, consider an animal-classification scheme. Suppose
that we know an animal is a human if we know it has any two of the following
properties: it uses language, it is a mammal, it stands on two feet, it uses tools.
If you are told that a certain animal stands on two feet and uses tools, then you
can uniquely classify it as human, because you have enough information to do
so. Now, if you are asked whether the animal can talk, you can incorporate the
other information associated with humans and answer “yes.” This same idea
carries over to our Ammann bars. Once we know enough to uniquely identify
a pattern, we can rightfully add any missing information to the sequences of
Ammann bars, possibly forcing new bars that will help us later.

More concretely, there are two patterns that we currently employ to force
more information in a Penrose tiling. There may be other patterns that have
not yet been discovered which force even more information. We hope that this
research will allow more of these rules to be discovered.

CHAPTER 4. FORCING RULES 35

Figure 4.5: The two bars (shown in bold) from the Dart (Ace) that are not
required to be forced. Only one of these bars must be forced for the Dart to be
forced.

4.3.1 Darts

A Dart always forces the Ace configuration, as mentioned earlier. There are five
Ammann bars that are forced in an Ace, but Minnick has shown that of these
five, one of two special bars may remain unforced. The two special bars are
shown in Figure 4.3.1. If one (but not both) of these bars is unforced, the entire
Dart configuration is still forced. When one of these bars is unforced, and we
find the Dart configuration, we can force the missing bar and add information
to the tiling.

4.3.2 Minnick’s Double Kite

Minnick discovered what we call the “Double Kite” forcing pattern. When two
Kites are aligned so that their short edges coincide, a single Ammann bar runs
directly through the two Kites. However, another Ammann bar is forced at
a distance equivalent to a short interval away, as in Figure 4.3.2. This line is
forced because all possible legal tile configurations that contain the Double Kite
shape all have this Ammann bar forced in this location. By exhaustive proof,
Minnick showed that the Double Kite formation always forces this Ammann
bar. We include it as one of the patterns we search for.

4.4 Drawing Tiles

Some of the patterns that we search for will simply be used to identify individual
Penrose tiles. When we have found a certain tile, we can use the position and
rotation information to draw a correctly oriented Penrose tile on top of the
Ammann bars. This step will allow us to display the forced Penrose tiles visually
after we have computed an empire.

CHAPTER 4. FORCING RULES 36

S

Figure 4.6: The “Double Kite” formation. Although the two Kites do not
directly force any Ammann bars, they force an Ammann bar at a distance S
from the Ammann bar that passes through both Kites.

Figure 4.7: A Kite tile, with the “Kite Triangle” Ammann bars in bold.

4.4.1 Kites

The Kite tile contains three Ammann bars which form a small triangle in the
center near the base of the Kite, as in Figure 4.4.1. Ammann bars that form
a triangle with these angles and side lengths are not found in any other shape
but the Kite. Thus, when we find this exact configuration of Ammann bars, we
know that a Kite is present.

The Kite does not force any additional information by itself, so finding this
pattern does not allow us to add any new information to the tiling. When we
render the final empire as a set of Penrose tiles, however, we must look for
this pattern so that we know where to draw Kites as part of the Penrose tiling
representation.

CHAPTER 4. FORCING RULES 37

4.4.2 Darts

The Dart configuration, mentioned previously and shown in Figure 4.3.1, is also
matched for drawing purposes. When an empire is finally rendered as Penrose
tiles, this pattern must again be matched so that the Dart tile can be drawn in
the tiling.

4.5 Review

Patterns of Ammann bars allow us to find regions in the plane that interest
us. These areas of interest may be areas where tiles can be drawn or new
Ammann bars can be forced. We create patterns so that they are unique, which
prevents us from drawing or forcing incorrectly. When we match a pattern, we
fill in any missing information (thereby forcing new Ammann bars), apply any
forcing rules (such as the Double Kite forcing rule), and draw any tiles. Doing
so allows us to find as much forced information in the tiling as possible.

Chapter 5

Implementation

We have now discussed all of the s necessary to find partial1 empires of Penrose
tiles. We have outlined the relationship between Penrose tiles and Ammann
bars, which will allow us to convert from one representation to the other. We
have explained algorithms that will allow us to deal with arbitrary forcings
in sequences of Ammann bars, which will allow us to get long-range forcing
information in a Penrose tiling. We have explained how we plan to find patterns
that interest us in the sequences of Ammann bars, and how we exploit these
patterns to obtain information about the Penrose tiling, as well as where we
should render Penrose tiles.

5.1 Overview

Now we must actually implement these algorithms. This chapter will discuss
the methods used to find the partial empires of Penrose tiles. We have chosen
to leave some details out, as they would only cloud the understanding of the
software. Such details will be noted in the text, but they will not be addressed
in the algorithms presented here.

Our software assumes that we are beginning with five sequences of Ammann
bars, arranged in a plane so that they define a Penrose tiling. We could have
started with tiles, and then had the software perform the additional step of
translating the initial tiles to Ammann bars. Giving exact coordinates of Pen-
rose tiles is no easier than simply defining the initial Ammann bars, however,
so our software simply begins with the Ammann bars.

1We emphasize here that the empires we find are as complete as possible, but are not
necessarily the entire empires of any set of Penrose tiles.

38

CHAPTER 5. IMPLEMENTATION 39

θ
Axis of Sequence

Ammann Bars

(x,y)

Zeroth
Bar

Figure 5.1: A sample Ammann bar sequence, with center (x, y) and rotation θ.

5.2 Musical Sequences and Ammann Bars

As described in Chapter 3, we have implemented Minnick’s geometric algorithm
for musical sequences. We have augmented the Ammann bar representation so
that a sequence of Ammann bars can be placed precisely in a two-dimensional
space. Our Ammann bars have a “center,” which is the zeroth bar of the se-
quence. All other bars are numbered relative to this bar.

Our Ammann bars also have a rotation, defining their orientation in the
plane. Because five sequences of Ammann bars interact to form a Penrose
tiling, we must be able to represent sequences of Ammann bars that have been
rotated through multiples of 72◦.

Finally, our Ammann bars have a center point. This is a point that the
zeroth bar passes through. This allows us to precisely align the Ammann bars
in the plane so that they interact properly. There is no point in a Penrose tiling
where all five sequences intersect, so we cannot simply have all the sequences of
Ammann bars centered at (0,0) in the plane.

Our final representation looks like Figure 5.2. The axis of the sequence
passes through the center point (x, y), and has an orientation θ, measured in
degrees from the x-axis. The Ammann bars themselves are perpendicular to
the axis of the sequence.

As shown in Chapter 3, we have routines to force arbitrary bars at a certain
distance from the origin. We also have routines that will return whether a
certain bar is forced or not.

While they will not be used in our conceptual explanations, our software
also contains routines to convert bar numbers to two-dimensional coordinates

CHAPTER 5. IMPLEMENTATION 40

Pattern:

Figure 5.2: A sample field of intersection points. The Ammann bars are shown
in light grey. A sample pattern like one we might search for is shown at bottom.

that lie along the axis of a sequence, as well as convert these coordinates back
to bar numbers. This allows for easier comparisons of points in the plane.

5.3 Intersections

Given five sequences of Ammann bars, our first task is to find all of the inter-
sections of these Ammann bars. Intersections provide us with the easiest way
to find relatively positioned Ammann bars, by outlining the shapes that they
make. We only test the forced Ammann bars when we compute our intersec-
tions, because only the forced bars correspond to forced tiles.

We do not simply store two-dimensional coordinates. Rather, we store the
intersection of two bars from two sequences. For example, if the fifth bar from
the sequence with rotation 72◦ intersects the second bar from the sequence with
rotation 216◦, then the intersection is said to occur at ((72◦, 5), (216◦, 2)). By
storing the rotation and bar number, we make our calculations exact by avoiding
round-off errors associated with real coordinates. Additionally, they make our
pattern matching easier later on by allowing us to analyze the relative positions
of the Ammann bars.

Figure 5.3 shows the intersection points for a small section of the plane. A
pattern like one that we might search for is shown below.

To find these intersection points, we must test each sequence of Ammann
bars for intersection with the others. Because the Ammann bars are arbitrarily
long, and because no sequence of Ammann bars is parallel with any other se-
quence, every Ammann bar from every sequence intersects every Ammann bar

CHAPTER 5. IMPLEMENTATION 41

Start of Algorithm FindIntersections

Input:

Ammann bars, an array of five sequences of Ammann bars

Ranges, Bars in each musical sequence that should be checked for intersection

Output:

Returns a set of bar intersections, in the form of
((Aorientation, Abarnumber), (Borientation, Bbarnumber))

Begin:

Loop for every sequence, SequenceA, in the array of Ammann bars
Loop for every remaining sequence, SequenceB, in the array of Ammann bars

For Each bar in SequenceA and each bar in SequenceB:
(Perform Range-checking on the bar number)

If the bars intersect Then Store the intersection value in the set to
be returned

Return the set of Intersections

End of FindIntersections

Figure 5.3: A pseudo-code implementation of the Intersection-finding algorithm

in every other sequence. Therefore, it is not unreasonable to test every bar for
intersection. In a real system we would limit the intersection test to only return
intersections in some finite area of the plane, so we must add in a small check
to confirm that the intersections are computed only for bars that fall within a
certain range. This step is not fleshed out in the pseudo-code for the intersection
routines is shown in Figure 5.3, but is easy to implement.

5.4 Pattern Matching

After the intersection routines have been run, we have a set of intersection points
that we can begin searching through for patterns. Because searching for certain
configurations of points is similar to searching for constellations in the night
sky, we say that we search for a constellation in a sky of points.

A constellation is the template pattern that we are searching for. It is defined
in its own plane in a way that is easy for the researcher to describe. A sample
constellation is shown in Figure 5.4. It is a small triangle, made from three
Ammann bars intersecting like the ones inside a Kite.

Because our constellations may appear at different positions and rotations
throughout our sky, we must have a mechanism that can find the constellation
despite these disturbances. When we have found a constellation in the sky,
we have created a mapping. A mapping details the rotation and translation
necessary to map the prototypical constellation to an actual pattern match in
the sky. The mapping is needed when we take action on the pattern, as we need
to know how to find it and its surroundings to perform actions such as forcing
new bars and rendering tiles.

The simplest approach to finding constellations in the sky is to simply it-

CHAPTER 5. IMPLEMENTATION 42

b

b

b

72º Sequence Axis

72º Sequence Axis

288º Sequence Axis

288º Sequence Axis

0º Sequence Axis0º Sequence Axis

(288º, 0)

(288º, 0)

(72º, 0)

(72º, 0)

(0º, 0)

(0º, 0)

((72º,0),(0º,0))

((288º,0),(0º,0))

((72º,0),(288º,0))

Figure 5.4: A sample constellation. Note that the constellation is defined at an
angle and position that is easy to compute.

CHAPTER 5. IMPLEMENTATION 43

Start

End

Figure 5.5: A sample ordering of points in a plane, from left to right, top to
bottom. Iterating over the points in order results in the path shown.

erate over all of the points in the sky, and check to see if it is part of a valid
constellation. Obviously, this method would be too time-consuming in practice.
Therefore, we must adopt a slightly more intelligent algorithm.

Our algorithm begins by sorting all of the points in the sky into a dictionary
ordering. We chose to sort the points leftmost to rightmost, and for coordinates
with the same x value, bottommost to topmost. This allows us to iterate over
the points in the order shown in Figure 5.4.

We now consult our constellation. We use a pair of points that are a known
distance δ apart from each other. In practice, it is best to choose a pair of points
with a distance between them that does not appear except in this constellation.
This way, less time will be spent later on when we verify matches. Additionally,
we should choose δ to be as small as possible, so that our scan line optimizations
(which will be discussed later) are more effective. It should be noted, however,
that the algorithm will still function correctly even if a poor choice of δ is
made. The constraints on δ are made only so that the algorithm will run faster.
Figure 5.4 shows our sample constellation with this pair of points marked.

CHAPTER 5. IMPLEMENTATION 44

72º Sequence Axis

72º Sequence Axis

288º Sequence Axis

288º Sequence Axis

0º Sequence Axis0º Sequence Axis

(288º, 0)

(288º, 0)

(72º, 0)

(72º, 0)

(0º, 0)

(0º, 0)

((72º,0),(0º,0))

((288º,0),(0º,0))

((72º,0),(288º,0))δ{

Figure 5.6: A constellation with the unique point-pair marked. The points are
separated by a distance δ.

CHAPTER 5. IMPLEMENTATION 45

d{
Scan Line

Figure 5.7: An example of the scan line used in the pattern-finding algorithm.

To reduce the practical number of points that must be compared in this
algorithm, we use a scan line to define the set of points that are currently being
considered as part of a match. The scan line has a width of δ, and only the points
which fall within this scan line are considered eligible for matching. Because the
size of δ determines how many points are under consideration, smaller values of
δ are desirable because they reduce this number of points.

The actual pattern-searching algorithm works as follows: After ordering
the points, we iterate over them one at a time. The point currently under
consideration is compared against all the points in our scan line. If any of
the points are exactly distance δ away, the two points are stored as a pair for
further consideration. Once all the points in the scan line have been checked,
the scan line advances to include the current point. Any points that were farther
than δ away on the x-axis have now left the scan line, and are no longer under
consideration. However, since we are only looking for points that are exactly δ
away, we know that those farther than δ away need not be considered. This is
the purpose of the scan line: to limit the points under consideration to those
that could possibly be close enough.

Once we have iterated over all the points in the sky, we are left with a set of
point-pairs which potentially belong to the pattern we are searching for, because
the point-pairs correctly match part of the constellation. We now consider each
of these point-pairs in turn, and determine if they actually form the pattern we
are looking for. If they do, then a mapping has been constructed, and we store
this for later use. If they do not, then the point-pair is discarded as incorrect.

CHAPTER 5. IMPLEMENTATION 46

Optional Bars

Figure 5.8: An example of how forcing information contained in the constellation
is applied to force new information in a tiling.

We repeat this process for all the different kinds of constellations that we
want to search for. We associate the mappings with the constellations they
belong to, resulting in a pattern match. These pattern matches will be used to
force new bars and render tiles.

5.5 Feature Forcing

Given a collection of pattern matches, we must force any new Ammann bars
that we know must be forced by the presence of other bars. A constellation
can store both the bars that are required to be matched, as well as those that
can optionally be matched (the Dart is an example of this). If this information
is included, then forcing new information is relatively straightforward. to force
new information, we first map our constellation to the pattern in the sky. The
mapping we use was found earlier, when we searched for patterns. To force new
information, we consult the constellation, and see where forcings should occur.
We map those forcings out to a real location in the plane, and then apply them.

As an example, consider Figure 5.5. The constellation shows us where the
intersection of two specific Ammann bars should occur. Naturally, we cannot
simply force bars using the addresses provided in the constellation; they describe
a different location and rotation than the one we wish to force. Therefore, we
apply the mapping, which changes the addresses of the intersections involved.
With these new addresses, we can apply the forcings correctly.

A more general algorithm to use when forcing new information is given in
Figure 5.9. The algorithm assumes that we have some constellation, with the
required intersections labeled separately from the optional intersections. Since
we have already found the required intersection pattern, we may use those points
as a base reference for the other intersections. By knowing the placement of one
Ammann bar in our constellation, we can find all other bars relative to it, and
force them if necessary.

CHAPTER 5. IMPLEMENTATION 47

In more detail, here is how the algorithm works: We must know the position
of at least one intersection of Ammann bars, otherwise we could not have made a
match. Knowing the position of this intersection, we can construct a relationship
between the Ammann bars of the constellation and the Ammann bars of the
actual pattern in the plane. For example, let’s say that we have some known
point A, which has the coordinates ((72◦, 1), (216◦, 1)). However, in our real
pattern, this intersection occurs at ((144◦, 12), (288◦, 14)). The bar numbers
are not as important as the fact that the sequences have changed. Our whole
template has been rotated 72◦, and so all the other intersection addresses must
be altered to compensate for this.

To force an optional intersection, we first determine what sequence it belongs
to by adding in the rotation found in the s just described. We now know which
sequences the intersection lies on in our pattern. Now, we map the constellation
point out into the plane, and then determine the Ammann bars that it must
lie on. Since we know the sequences, and we know the point that the forced
Ammann bars must intersect at, this becomes a simple matter of converting the
coordinates to distances along the musical sequences, and then converting the
distances to bar numbers. Having done this, we can force the bar numbers, and
the operation is complete. Repeating this procedure for all the optional bars
will ensure that any information that should be forced is forced.

5.6 Feature Drawing

After we have forced all of the new information in a tiling, the only step that
remains is to convert the Ammann bars back into Penrose tiles for final ren-
dering. This is relatively simple, and works in a similar fashion to the forcing
algorithms.

To draw a tile in the correct area of the plane, we need only to have a
drawing that matches our constellation. Grünbaum and Shephard [GS87] ex-
plain the relationship between the Ammann markings and the Penrose tiles,
and by applying this information we can construct a drawing that overlays our
constellation perfectly.

Once we have this information, drawing the tile is elementary. Any pattern
match in the plane has a mapping which describes how to translate and rotate
the constellation to match the pattern in the plane. Because our drawing is sim-
ply an overlay on this constellation, drawing the tile simply requires translating
and rotating it with the same mapping. Once we have done so, the drawing is
in the correct place.

5.7 Pattern Matching Algorithm In Detail

We have now described the basic algorithm for finding forced Penrose tiles in
the plane. We will now return to the portion of the algorithm which deals with
the actual matching of patterns in the plane and treat it in more detail.

CHAPTER 5. IMPLEMENTATION 48

Start of Algorithm ForceNew

Input:

Ammann bars, an array of five sequences of Ammann bars

Constellation, the set of intersection points that define the pattern we are looking
for. Constellation should contain required intersections of Ammann bars, which must
have already been matched, and optional intersections, which are those that will be
forced by this algorithm

Mapping, the transformation that maps the template constellation to a real position
in the plane

Output:

Alters the Ammann bars so that any bars that are forced by the presence of the
constellation are now forced

Begin:

Map a known intersection point from the constellation to a real point in the plane
and Store it in BaseIntersection

Compute the difference between the known point’s sequence rotation and the se-
quence rotation of BaseIntersection, and Store this value in BaseRotation

For Each intersection point that is optional :

Calculate the sequences that the point must lie on, using BaseRotation as a
compensation value

Map the point to a real position in the plane

For Each sequence that this intersection point involves

Calculate the distance along the sequence where the point lies
Calculate the bar number that this distance corresponds to
Force the bar number for this sequence

End of ForceNew

Figure 5.9: A pseudo-code implementation of a function to force new Ammann
bars in a Penrose tile.

CHAPTER 5. IMPLEMENTATION 49

5.7.1 Scan Line Algorithm

The scan line is used to limit the points that are under consideration during
our initial search for patterns. Earlier, we only mentioned that the scan line
“moved” across the sky of points so that we were only considering points that
were close to the current point that we were looking at. We will now return to
this concept and further develop our algorithm.

When we begin our search through the sky of points, we must already have a
distance δ, derived from some pair of points in the constellation. This distance
should be one that does not occur frequently outside of the constellation. The
scan line is as wide as this value δ to prevent consideration of points that are
obviously farther than δ away. If a point has an x value that differs from the
current point by more than δ, then it is guaranteed to be too far away. Because
of this, δ should also be as small as possible so that we can keep the number
of points under consideration as small as possible. Note that both of these
constraints on δ are not mandatory; they are used to make the algorithm run
faster, but are not required for it to function correctly.

To implement the scan line, we use a queue. As points are added to the scan
line, they are pushed onto the tail of our queue. As points leave the scan line
they are popped off of the head of the queue. If our scan line moves from left
to right, the leftmost points (those that have been in the scan line longest) are
those that are closer to the head of the queue.

The queue algorithm is shown in Figure 5.10, and works as follows: the
points at the head of the queue are compared against the current point. If the
point at the head of the queue has an x value that differs by more than δ from
the current point’s x value, it is popped off the queue. This is repeated until the
point at the head of the queue has an x value which is within δ to the current
point. This is how we “move” the scan line to the right. The points that are
popped off the queue correspond to those that leave the scan line as it moves
to the right.

Our queue now only contains the points that might be the correct distance
from our current point. We iterate over these points, calculating the distance
between them and the current point. If we compute a distance of δ, then the
pair of points (that is, the current point and the one in the queue that is δ
away), is saved for further consideration.

When all of the comparisons have been made, the current point is added to
the tail of the queue, the next point in the sky is made to be the current point,
and the algorithm begins again. When we have iterated over all the points in
our sky, we are left with pair of points that are the correct distance δ apart.

5.7.2 Mapping Verification

Once the scan line algorithm has been run, we have pairs of points that are
some distance δ apart. These point pairs represent potential matches, and must
be checked further. The reason they are potential matches is that they are the
correct distance apart to be one pair in our constellation. The distance δ was

CHAPTER 5. IMPLEMENTATION 50

Start of Algorithm ScanLine

Input:

Sky, a set of Ammann bar intersection points

δ, a known distance in the constellation. We are searching for points that are exactly
this distance apart

ScanQueue, an initially empty queue that will hold points. Points are added to the
tail and removed from the head

Output:

Returns a set of pairs of points. These pairs are points that are exactly δ apart from
each other

Begin:

For Each intersection point J in the sky:

While the x value of the intersection point at the head of the ScanQueue differs
from the x value of J by more than δ:

Remove the point at the head of the ScanQueue

For Each intersection point K in the ScanQueue:

If the distance from J to K is δ
Then Store the point pair {J,K} to be returned
Else (nothing)

Add J to the tail of ScanQueue

End of ScanLine

Figure 5.10: A pseudo-code implementation of the scan line queue from the
pattern matching algorithm.

CHAPTER 5. IMPLEMENTATION 51

chosen from the distances in our constellation, and so these point pairs represent
points that would fit in our constellation.

We must now verify that the other points in the constellation also exist in
the sky, near the points that the scan line algorithm found. To do so, let us
assume that we have a point pair, found by the scan line algorithm, consisting
of points {J,K}. We shall also assume that these points are the same distance
δ apart as the points {M,N} from our constellation.

The first thing to do is to construct a mapping. A mapping is a formula
that will translate and rotate a constellation point to some place in the plane
where the constellation is supposed to occur. Mappings are used by the later
algorithms, as we saw in the forcing and drawing algorithms discussed earlier.
We can build a mapping from only two points in the following manner.

Determine a translation that will move point M to point J. This is the
translation part of the mapping, expressed as (∆x, ∆y). Computing these values
is as simple as

∆x = Jx −Mx ∆y = Jy −My

We have now mapped the first points from the pairs. Using the second
points, we can get the rotation required for the mapping. Conceptually, the
way this is done is to first translate the points so that the first two (M and
J) coincide, and then simply determine the angle θ which we must rotate N
through (with respect to M) to coincide with K.

Mathematically, we can represent this using the arctan function. If we trans-
late the points by ∆x and ∆y, then they both have the same center of rotation
at (0, 0). If we compute the rotations with respect to the origin, as follows:

Krot = arctan
Kx

Ky
Nrot = arctan

Nx

Ny

If we subtract Krot from Nrot, we are left with the angular difference of the
two. This is the rotational component θ of the mapping. Note that this angular
computation does not confirm that the points K and N actually coincide; it
merely finds the angle between them. A final check should be made to ensure
that the points actually line up.

We now have a complete mapping, with translation components (∆x,∆y)
and rotational component θ. With it, we can map any point in our constellation
to a real point in the sky. The two points in our constellation that were separated
by a distance δ trivially map to the correct points in the sky. But the rest of
the constellation needs to be verified. to do so, we simply map every point in
the constellation with the mapping we just constructed. The resulting point is
a point that must exist for the constellation to be found at that point in the
sky. We test for that point in our set of sky points. If it exists, then we continue
checking the constellation. If it doesn’t exist, then we can stop. When we have
finished, if all the mapped constellation points exist in the sky then the mapping
is valid and the pattern has been matched.

CHAPTER 5. IMPLEMENTATION 52

Start of Algorithm PatternVerify

Input:

Sky, a set of Ammann bar intersection points

Constellation, the constellation that defines the pattern we’re looking for

PointPairs, a set of pairs of points that correspond to a certain pair of points in our
constellation, {M,N}. PointPairs should be generated by the ScanLine algorithm

Output:

Returns a set of Mappings, which map the Constellation to all the locations in
the plane where it occurs.

Begin:

For Each pair of points {J,K} in the set of PointPairs:

Compute a Mapping from points {J,K} to {M,N}
For Each point P in the Constellation (excepting M and N):

Map P using the Mapping to point P’
Search for point P’ in the Sky
If the point is found
Then Continue
Else Exit For Loop

If all the points in the Constellation mapped successfully

Then add the mapping to the set to be returned

Compute a reversed Mapping from points {J,K} to {N,M} and repeat the
Constellation point verification For Loop above using this Mapping.

End of PatternVerify

Figure 5.11: A pseudo-code implementation of the pattern verification algo-
rithm.

This is how we verify the point pairs that we obtain from our scan line al-
gorithm. The algorithm for this pattern verification is shown in Figure 5.11.
One final note: as shown above, the mapping is constructed by arbitrarily cor-
responding point J with M and point K with N. Obviously, there is no reason
why the points couldn’t be associated the other way (J with N and K with
M), because the pattern may be flipped over. In order to deal with this, we
should always test two mappings per point pair, to ensure that we’ve checked
both possibilities.

5.8 Complexity

As noted in Chapter 3, we would like the algorithms that we use to be as
efficient as possible. The algorithms above should allow us to find the empires of
arbitrary patches of tiles. We are interested in knowing how long the algorithms
will take, so that we can predict the performance and search for improvements.
We will consider the various pieces of our empire-finding algorithms below in
an attempt to determine the overall complexity.

CHAPTER 5. IMPLEMENTATION 53

5.8.1 Ammann Bars

In order to get the intersection points that we will search through for patterns,
we must first find all the intersections. To do this, every Ammann bar must be
compared against every Ammann bar from the other sequences exactly once.
If there are m Ammann bars per sequence, then we have a factorial number of
comparisons. The first sequence must have its m bars checked against the other
4 sequences’ m bars. The second must be checked against 3 other sequences, and
so on. With 5 sequences total, the number of comparisons can be represented
by

4m2 + 3m2 + 2m2 + m2

Dropping the coefficient, we have a complexity of O(m2), dependent on the
number of Ammann bars per sequence, m. The result of these comparisons,
however, is some number of points n. Because each intersection produces one
point, and because every bar interacts with every other, each test results in one
point. Thus, the overall complexity of the algorithm, in terms of the number of
points in the sky, is O(n2).

For the actual scanning of points, several factors work against us. Every
point in the sky is potentially part of a pattern. We must therefore inspect
every point at least once, which requires n inspections.

When we inspect a point to see if it is part of a pattern, we must see if there
is some other point in the sky that is a distance δ away. If we did not use the
scan line algorithm, every other point in the sky would have to be checked to see
if it was the correct distance away. This would also require n comparisons, and
so the total complexity of just finding candidate pairs alone would be O(n2).

After we have found the candidate pairs, they must be further tested to
see if they form a true pattern or not. As we saw above, doing so requires
constructing a mapping, and then mapping all the points in a constellation and
verifying that they appear in the sky. Constructing a mapping is a constant-
time algorithm (a fixed number of simple operations), and so it does not affect
our run time. Also, if we assume that the number of points in the constellation
is relatively small compared to n, then this too has no impact on our order of
magnitude. However, each constellation point that is mapped must be searched
for in the sky of points. Assuming we store the points in a structure that is
efficient to search, such as a binary search tree, our search time is O(n log n).
This will dominate the verification algorithm’s run time, and so the verification
step alone is O(n log n).

This verification step must be performed for all pairs of points that are the
correct distance δ away. In the worst case, all n points would match this distance
δ, and so the verification step would be performed n times. This is why choosing
a “rare” value for δ is extremely important; it k the number of verifications to
a minimum if we choose a value for δ that does not occur frequently. Assuming
that the number of candidate pairs is much smaller than n, the verification step
does not adversely affect our run time.

CHAPTER 5. IMPLEMENTATION 54

δ

√ n

√ n

{
Figure 5.12: A graphical demonstration of how the scan line reduces the com-
plexity of the pattern matching algorithm. The total number of points is n, but
only

√
n points are under consideration at any time.

Adding up the s of the Intersection algorithm, the pair-finding algorithm,
and the verification algorithm, we would find that the run time of the whole
pattern matching algorithm to be

O(n) + O(n2) + O(n log n) ≈ O(n2)

Clearly, the O(n2) term will dominate the complexity. What this means is
that we should try and make the pair finding algorithm as efficient as possible.
We do this through the use of the scan line described above. The scan line
heavily limits the number of point comparisons that we perform.

For computational purposes, assume that our n points are evenly distributed
throughout the sky. This means that we can draw a grid such that one and only
one point falls within each square of the grid. A simple calculation will show
that the dimensions of our sky can be expressed as

√
n units wide and

√
n units

tall, because multiplying the two together yields n, with one point per square.
Assume that we make δ small enough so that it is on the order of

√
n. This

is not unreasonable; δ is roughly the size of a single Penrose tile, so any empire
involving a large number of tiles will quickly grow so that δ is relatively small.
If δ is the same size as

√
n, and if our scan line is as wide as δ, then we are

considering
√

n points at any given time, because that is how many points will
be found inside the scan line. Thus, rather than considering all n points in
the sky to find a pair, we consider only

√
n. This concept is demonstrated in

Figure 5.8.1.

CHAPTER 5. IMPLEMENTATION 55

The complexity of the algorithm is reduced from O(n2) to O(n
√

n). While
this is not as good as O(n log n), it does represent a tangible difference in the
running time of the algorithm.

5.8.2 Further Optimizations

The scan line algorithm allows us to reduce the run time of our pattern matching
algorithm. In addition to this, we have implemented a partitioning scheme that
improves the run time of our pattern matching algorithm even more.

Conceptually, the partitioning scheme works as follows: given a square sec-
tion of the plane to search for intersections, the partitioning scheme divides it
into four smaller squares. The partitioning scheme is recursively called on each
of these smaller squares, which will continue to be divided up until the squares
have reached some predetermined size that is considered small enough to work
on.

In practice, the algorithm is very similar. The first consideration is the
loss of patterns on the borders of the squares. If a pattern was split by the
boundary between two squares, then it would fail to be recognized by either of
the two independent pattern matches in both of the squares. to prevent this
from happening, we make sure that the squares overlap slightly, such that the
overlap is the same size as the largest pattern we will ever look for. This way,
any pattern is guaranteed to fall completely inside one of the two squares (or
both).

The second consideration is determining when we have divided the squares
up “enough.” Dividing up squares introduces some memory and computational
overhead, and we don’t want to make our problems worse. Therefore, we should
stop partitioning before it becomes more inefficient to partition than to just
compute the intersections for the whole square.

Our software takes both of these factors into account. It does not parti-
tion unless the area to be considered is sufficiently large, and when it partitions
it makes sure that all the squares overlap by at least as much as the largest
pattern that is being searched for. In doing so, the run time of the software no-
ticeably improved. Even more importantly, memory consumption dramatically
decreased, because the software did not have to store large numbers of intersec-
tions while it searched for patterns. By converting the partitioning scheme to an
iterated system, we virtually eliminated the problem of running out of memory,
because we only needed enough memory to consider the smallest partition size
plus the space to store the other partition information.

With these optimizations, our software is capable of rendering large portions
of Penrose Empires in a reasonable amount of time. With this new tool, the
search for more forcing rules in Penrose tilings can begin.

Chapter 6

Results

Having implemented the algorithms from the previous chapter in software, we
can now produce empires of any arbitrary set of initial tiles. Note that the
algorithms we use are not necessarily complete; there may still exist forcing
rules unknown to us. We therefore stress that the figures shown in this chapter
are partial empires of tiles. There are more tiles shown here than in other
previous works, but we do not claim to have complete empires shown here.

6.1 Verified Empires

The configurations of tiles that have been studied the most are those of the
seven vertex configurations. These seven arrangements are the only ways that
Penrose tiles can legally arrange themselves around a single point. For this
reason it is natural to begin our exploration of empires here.

Each configuration must be defined in terms of the Ammann bars that force
the tile configuration. This step is not trivial, and so we have included diagrams
of the initial bar forcings for each vertex configuration. The notation used for
distances comes from Minnick, who cataloged the distances between the vertex
points of Penrose tiles and the Ammann bars in her research. Her table of these
distances is included for reference in Figure 6.1.7. Additionally, Figure 6.1.7
and Figure 6.1.7 show the Dart and Kite tiles with these distances marked.

In these initial Ammann bar configurations, we show only the initial forced
tiles and the Ammann bars that cause them to be forced. There are often locally
forced tiles as well (caused by the presence of a Dart). In the interests of clear
diagrams, however, these local tiles have been omitted, as have the Ammann
bars that force them.

In the center of each diagram is a point where all the axes (shown using
dashed lines) of the musical sequences intersect. This corresponds to the point
(0, 0) in the plane. Each musical sequence has an angle that is an integer multiple
of 72◦, and axes are labeled in terms of their angles of rotation.

The Ammann bars are defined as being forced a certain distance away from

56

CHAPTER 6. RESULTS 57

the center point (0, 0). The tables below the figures show the distance that the
zeroth and first (if necessary) bars are from the center point. The distances
used are those defined in Figure 6.1.7. If a distance is negative, it simply means
that the distance should be applied at 180◦ to the axis of the sequence. In other
words, if we want to travel a distance −x along a sequence with angle 72◦, we
simply travel a distance x at an angle of 252◦.

For each vertex configuration we have shown a diagram of the Ammann bars
that force the tiles, as well as a short table of initial bar distances from the zero
point. If two bars are forced in a single sequence, the interval between those
bars is also listed.

6.1.1 The Ace

The Ammann bars required to force the Ace are shown Figures 6.4 and 6.5.
The final empire of the Ace is shown in Figure 6.1.7. The Ace configuration
alone does not force any other Penrose tiles. Looking at the Ammann bars, the
reason why becomes obvious. Only one Ammann bar is forced for each musical
sequence. Because one bar does not force any others, no Ammann bars besides
the initial ones are forced, which in turn causes no tiles to be forced. This figure
is included to demonstrate that the software correctly finds the empire of the
Ace. The scale is large to show that no extra tiles have been introduced by the
software.

6.1.2 The Deuce

The Ammann bars required to force the Deuce are shown Figures 6.7 and 6.8.
The final empire of the Deuce is shown in Figure 6.1.7. Like the Ace config-
uration, the Deuce only forces one bar per musical sequence. Unlike the Ace,
however, the Deuce forces other non-local tiles. This happens because our bar
forcing rules allow us to force new bars from our initial set.

A Dart has optional bars that do not need to be matched. The Deuce
configuration lacks one optional bar from both of its Darts; we can fill in these
bars because we know they must exist. After we have done so, there are now
two bars in two of the musical sequences. This causes more Ammann bars to
be forced, and thus there are non-local tiles forced as well. The Deuce therefore
serves as an excellent example of how optional bar forcing can help us find more
forced information.

Previous research by Grünbaum and Shephard [GS87] has shown the empire
of the Deuce to contain a set of Kites stretching perpendicular to the axis that
separates the two Darts (in Figure 6.7, this is the 144◦ axis). Taking into account
the complete forcing rules, however, yields a much larger empire, which can be
seen by the numerous diagonal alignments of Kites, rather than just a single
diagonal passing through the center of the figure. These “new” tiles were first
found by Minnick [Min98], and Figure 6.1.7 shows a larger set of forced tiles
found using Minnick’s method.

CHAPTER 6. RESULTS 58

6.1.3 The Sun

The Ammann bars required to force the Sun are shown Figures 6.10 and 6.11.
The final empire of the Sun is shown in Figure 6.1.7. Just like the Ace, the
Sun does not force more than one bar per musical sequence. Therefore, the Sun
does not force any other tiles. Like the Ace, we include a figure of the Sun to
demonstrate the software’s correctness.

6.1.4 The Star

The Ammann bars required to force the Star are shown Figures 6.13 and 6.14.
The final empire of the Star is shown in Figure 6.1.7. The Star forces numer-
ous non-local tiles, because it forces two Ammann bars per musical sequence.
The Star also demonstrates the five-fold symmetry present in Penrose tilings.
Patterns and self-similarities begin to emerge at the scale shown in Figure 6.1.7.

6.1.5 The Jack

The Ammann bars required to force the Jack are shown Figures 6.16 and 6.17.
The final empire of the Jack is shown in Figure 6.1.7. Similar to the Deuce, the
Jack has Darts which force more than the initial set of Ammann bars. These
extra bars are responsible for the forcing of all the non-local tiles.

This rendering of the Jack’s empire shows tiles that have never been pub-
lished before. The single Kites found throughout the picture are the result of
forced Ammann bars interacting at long distances from the initial patch of tiles.

6.1.6 The Queen

The Ammann bars required to force the Queen are shown Figures 6.19 and 6.20.
The final empire of the Queen is shown in Figure 6.1.7. The number of tiles
shown in this figure are larger than those presented by Minnick, though the
extra tiles are found using the same rules.

6.1.7 The King

The Ammann bars required to force the King are shown Figures 6.22 and 6.23.
The final empire of the King is shown in —figfig:king-empire.

This rendering of the King’s empire shows tiles that have never been pub-
lished before. In addition to being much larger than the figures published by
Minnick, Figure 6.1.7 shows a few small patches of Kites that Minnick did not
include in her figures.

CHAPTER 6. RESULTS 59

a sin(54◦)(2τ+1
2τ) 1.059017 v 1

4 (3− tan(36◦)
tan(18◦)) 0.190983

b .25 .25 x 2τ+1
2τ 1.3090169

c cos(36◦) + .75 1.559017 y 1
2τ 0.309016 9

d a− 1 0.059017 z .25 .25
e τ − b 1.368034 w .75 .75

Figure 6.1: Minnick’s vector distances relating Penrose tile vertices and Am-
mann bars. The distances correspond to those marked in Figure 6.1.7 and
Figure 6.1.7.

CHAPTER 6. RESULTS 60

a a

a

bb

c c

w w

z z

xx

y y

36 3672

216

18 18

54
54
72

54
54

36
36
36

36
36
36

54
54

72
54

54

Figure 6.2: Dart tile with Minnick’s distances from Figure 6.1.7 marked.

CHAPTER 6. RESULTS 61

w w

z z

aa

a a

e

b

bb

y y

xx

7 27 2

9 0 9 0

144144

3 6

5 45 4
7 2 7 2

5 45 4

7 27 2

Figure 6.3: Kite tile with Minnick’s distances from Figure 6.1.7 marked.

CHAPTER 6. RESULTS 62

288º A
xis

-288º A
xis

-7
2º

 A
xi

s

72
º

A
xi

s

144º Axis

-144º Axis216º A
xis

-216º A
xis

-0º Axis 0º Axis

Figure 6.4: The initial constellation of the Ace configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: a a -(x+y+z) -(x+y+z) a

Figure 6.5: Ammann bar forcing distances for the Ace configuration.

CHAPTER 6. RESULTS 63

Figure 6.6: The empire of the Ace configuration. No non-local tiles are forced
by this configuration.

CHAPTER 6. RESULTS 64

288º A
xis

-288º A
xis

-7
2º

 A
xi

s

72
º

A
xi

s

144º Axis

-144º Axis216º A
xis

-216º A
xis

-0º Axis 0º Axis

Figure 6.7: The initial constellation of the Deuce configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: a -(x+y+z) -(x+y+z) -(x+y+z) a

Figure 6.8: Ammann bar forcing distances for the Deuce configuration.

CHAPTER 6. RESULTS 65

Figure 6.9: Part of the empire of the Deuce configuration.

CHAPTER 6. RESULTS 66

288º A
xis

-288º A
xis

-7
2º

 A
xi

s

72
º

A
xi

s

144º Axis

-144º Axis216º A
xis

-216º A
xis

-0º Axis 0º Axis

Figure 6.10: The initial constellation of the Sun configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: b b b b b

Figure 6.11: Ammann bar forcing distances for the Sun configuration.

CHAPTER 6. RESULTS 67

Figure 6.12: The empire of the Sun configuration. No non-local tiles are forced
by this configurations.

CHAPTER 6. RESULTS 68

-288º A
xis

-7
2º

 A
xi

s

-144º Axis

-216º A
xis

-0º Axis 0º Axis

144º Axis

72
º

A
xi

s

288º A
xis

216º A
xis

Figure 6.13: The initial constellation of the Star configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: -(x+y+z) -(x+y+z) -(x+y+z) -(x+y+z) -(x+y+z)
First Bar: a a a a a

Interval: L L L L L

Figure 6.14: Ammann bar forcing distances for the Star configuration.

CHAPTER 6. RESULTS 69

Figure 6.15: Part of the empire of the Star configuration.

CHAPTER 6. RESULTS 70

288º A
xis

-288º A
xis

-7
2º

 A
xi

s

72
º

A
xi

s

144º Axis

-144º Axis216º A
xis

-216º A
xis

-0º Axis 0º Axis

Figure 6.16: The initial constellation of the Jack configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: e z b b z

Figure 6.17: Ammann bar forcing distances for the Jack configuration.

CHAPTER 6. RESULTS 71

Figure 6.18: Part of the empire of the Jack configuration.

CHAPTER 6. RESULTS 72

288º A
xis

-288º A
xis

-7
2º

 A
xi

s

72
º

A
xi

s

144º Axis

-144º Axis216º A
xis

-216º A
xis

0º Axis-0º Axis

Figure 6.19: The initial constellation of the Queen configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: a -w -(x+y+z) -(x+y+z) -w
First Bar: a a a a

Interval: S L L S

Figure 6.20: Ammann bar forcing distances for the Queen configuration.

CHAPTER 6. RESULTS 73

Figure 6.21: Part of the empire of the Queen configuration.

CHAPTER 6. RESULTS 74

288º A
xis

-288º A
xis

-7
2º

 A
xi

s

72
º

A
xi

s

144º Axis

-144º Axis216º A
xis

-216º A
xis

-0º Axis 0º Axis

Figure 6.22: The initial constellation of the King configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: -w -(x+y+z) -(x+y+z) -(x+y+z) -(x+y+z)
First Bar: a a a a a

Interval: S L L L L

Figure 6.23: Ammann bar forcing distances for the King configuration.

CHAPTER 6. RESULTS 75

Figure 6.24: Part of the empire of the King configuration.

Chapter 7

Ongoing and Future work

We have now demonstrated the capability of the software that we have designed.
Our hope is that it will allow us to find new forcing rules, similar to those
outlined in Chapter 4. We have already begun some preliminary work on this,
and those efforts are described below. We emphasize that what we have done so
far is only the beginning; much analysis can still be done with respect to finding
new rules.

Because our software makes it easy to generate empires of arbitrary patches
of tiles, we can “set up” situations where we expect certain interactions to occur,
and then observe the actual results in the Penrose tiling. Below are some of the
ways that our software may help in the discovery of new forcing rules.

7.1 Interference

Minnick [Min98] noted that while the Ace does not force any non-local tiles,
two Aces with different orientations can force non-local tiles. We decided to
generate the empires of several configurations of Aces to see if there were any
interesting phenomena occurring in the tilings.

We began by taking two Aces oriented at 144◦ from each other and placing
them adjacent to each other, as shown in Figure 7.1. In this configuration, only
one non-local tile is forced: a Kite that fills out the Sun formation created by
the four Kites forced by the two Aces.

We then moved one of the Aces away from the other in a straight line from
its initial position. We positioned this Ace at six other positions in the plane,
increasing the distance of separation each time. The positions were determined
by looking at the Ammann bars forced by the first Ace and calculating where
another Ace could be placed so that it was not in violation of the forcing rules.

We expected to see the regions of forced tiles change as the initial tiles were
moved away from each other. We dubbed the process “interference” because it
was analogous to the interference patterns created by two sources of light; as the
sources are moved away from each other, the pattern created by the interference

76

CHAPTER 7. ONGOING AND FUTURE WORK 77

of their light changes.
The results from these interference patterns can be seen in Figures 7.1–7.1.

Previous work by Minnick [Min98] had stated that only Kites would be forced
by the presence of two Aces, but as some of these figures show, much larger
structures are forced by just two Aces. Just as the interference pattern from
light sources may grow stronger or weaker when the sources are moved, the
number of tiles forced by the Aces can be seen to both increase and decrease as
the initial Aces are moved. The configurations with many forced tiles are the
result of fewer Ammann bars forced by the initial Aces overlapping. The more
unique Ammann bars forced by the Aces, the more Ammann bars that will be
forced in total, and so more tiles will be forced. Conversely, the more Ammann
bars that the initial Aces have in common, the fewer Ammann bars and tiles
that will be forced.

We have not been able to fully analyze these results. Our suspicion is that
certain Ammann bar spacings force more information than others. In other
words, forcing the first and fifth bar in a musical sequence may force more bars
than forcing the first and tenth bar. This relationship is not obvious, however,
and the fact that we must simultaneously consider five sets of Ammann bars
only complicates matters.

Nevertheless, the results suggest that there are still many rules regarding
forcings that have yet to be found. It is our hope that by relieving the researcher
of the burden of computing empires we have made analysis of Penrose tilings
easier and more productive.

CHAPTER 7. ONGOING AND FUTURE WORK 78

Figure 7.1: Two-Ace interference: Separation 1

CHAPTER 7. ONGOING AND FUTURE WORK 79

Figure 7.2: Two-Ace interference: Separation 2

CHAPTER 7. ONGOING AND FUTURE WORK 80

Figure 7.3: Two-Ace interference: Separation 3

CHAPTER 7. ONGOING AND FUTURE WORK 81

Figure 7.4: Two-Ace interference: Separation 4

CHAPTER 7. ONGOING AND FUTURE WORK 82

Figure 7.5: Two-Ace interference: Separation 5

CHAPTER 7. ONGOING AND FUTURE WORK 83

Figure 7.6: Two-Ace interference: Separation 6

CHAPTER 7. ONGOING AND FUTURE WORK 84

Figure 7.7: Two-Ace interference: Separation 7

CHAPTER 7. ONGOING AND FUTURE WORK 85

7.2 Three-Dimensional work

Another possible area of research would be in the area of three-dimensional
Penrose tilings (Danzer tilings). Penrose tilings in two dimensions are fairly
easy to understand, which may help to explain why no one before us had gone
to the trouble to write software to generate empires. The three-dimensional
analogues to Penrose tilings, however, are extremely difficult to visualize and
model. Because the software takes care of the part of the problem that com-
puters are good at (calculations), but leaves the part that humans are better
at (pattern recognition and rule creation), it could be extremely helpful in the
three-dimensional case.

7.3 Iterative Verification

A final possibility for further work would be using the software in combination
with iterative methods for generating Penrose tilings. Socolar [Soc91] developed
algorithms to iteratively grow defect-free tilings. These algorithms exploit only
local vertex-alignment rules, and so cannot take into account the long-range
forcings that we have found. Used in conjunction with our software, however,
they could help us find new forcing rules.

Socolar’s method “grows” a tiling in the following way: An initial patch
of tiles is placed in the plane. Any tiles that are locally forced by this patch
are added until there are no more vertices where the tile choice is forced. At
this point, an arbitrary tile is added to a certain part of the tiling (the exact
placement is not important to this discussion), which creates a new area where
forced tiles must be placed. In this way, the tiling grows in spurts as forced tiles
are placed, a surface is reached where no forced tiles can be placed, and then
one tile changes the surface such that more forcings can occur.

Our software attempts to find all forced tiles using non-local rules. Perhaps
our methods could be combined with socolar’s to find more forced tiles. Suppose
we began with an initial set of tiles. Our software would find all the Ammann
bars forced by this initial patch. Then, using Socolar’s algorithm, we could begin
to place tiles in the plane, but only if the placed tiles were consistent with the
Ammann bars. socolar’s method does not have any long-range structure, and
so the arbitrary selection of tiles in his algorithms would cause problems with
our empire finding. If we ensure that the tiles found through Socolar’s method
remain consistent with the Ammann bars that have already been found, then
we can “grow” the empire of an initial set of tiles and know that it is consistent
with our original patch. This prevents us from having to perform the time-
consuming pattern matching to find forced tiles, and it may find tiles that are
not found using our software alone.

Chapter 8

Summary and Conclusion

This work is useful because it sets the stage for future research in the area of
Penrose tilings. We have implemented a constant-time algorithm that forces
arbitrary bars in musical sequences. This required refining Minnick’s algorithm
so that it was suitable for use in a computer with finite precision; we had to
keep the algorithm’s arbitrarily precision, but still use only a finite number of
resources.

We developed algorithms that would enable us to determine the interactions
between several sets of Ammann bars in the plane. This required devising a co-
ordinate system that would retain the precision of specific bar numbers. At the
same time, we needed to allow for a conversion to two-dimensional coordinates so
that Euclidean distances could be determined. Without these two-dimensional
equivalents, pattern matching and tile drawing would not be possible.

Using the intersections gathered from the plane, we developed algorithms
that would search through the intersection points, looking for patterns that in-
terested us. While the algorithms are inherently of O(n2) complexity, we intro-
duced a “scan line” algorithm which reduced the expected runtime to O(n

√
n).

The algorithms are general, and can be easily modified to search for new pat-
terns.

The patterns were not merely matched; they also provided a method to
incorporate new information into the Penrose tiling. This feature makes it
easy to integrate new rules for forcings in Penrose tilings. When a new rule is
discovered, a pattern is created that matches the initial conditions for the rule,
and then the postconditions for the rule integrate the new information into the
tiling.

As part of the testing and validation of these algorithms, we had to generate
the patterns for the basic Penrose tiles and rule forcings. Thus, we created
patterns for the Kite (which forces no new information), the Dart (which forces
two adjacent Kites), and the “Double Kite” (which indirectly forces an Ammann
bar).

Additionally, to verify our work against previous work, we computed the ini-
tial Ammann bar sets which force the seven vertex configurations: Ace, Deuce,

86

CHAPTER 8. SUMMARY AND CONCLUSION 87

Star, Sun, Jack, Queen, and King. The definition of these tiles in terms of pure
Ammann bar addresses has never been done before. Because the Ammann bars
are such a compact representation of the tilings, defining tiles in terms of the
bars makes more sense than using the tiles themselves.

Beginning to look for new forcings, we computed the empires of two “inter-
fering” Aces, spaced at different intervals from each other. In addition to these
interference patterns, we suggested other possible avenues of further study. Our
methods may be applicable to the three-dimensional version of Penrose tilings,
advancing study in that area. Also, an iterative empire-generating method us-
ing a combination of our non-local methods and Socolar’s local methods may
yield rules that could not be found using either method alone.

It is our hope that the software and methods outlined in this work will assist
future research by providing a tool that frees the researcher from the hard work
of generating Penrose tilings. With such a tool, more can be learned about
Penrose tilings.

Colophon

This document was written in the LATEX document processing system, using
GNU Emacs as the editor. The figures in the document were created with the
software created for this research and ClarisWorks 4.0 (on the Macintosh). All
figures were cropped and made ready for press in Adobe Illustrator 8.0 (again,
on the Macintosh) before being exported to EPS format for inclusion in the
LATEX document.

The software itself (“the tiling package”) was written in Java, version 1.1.8.
It makes use of Duane Bailey’s Java Structures packages for certain data struc-
tures (mainly the GUI and large structures such as binary trees and hash tables).
All the other code is pure Java, consisting of over 6,000 lines of original code
spread out over 18 classes.

To “date” this work: the figures produced by the software were rendered on
a Sun Ultra workstation, and usually took between 10 minutes and 3 hours to
complete, depending on the complexity of the picture. The average personal
computer today has a 750MHz processor, 128MB of RAM and a 10GB disk
drive for secondary storage. Such a device would cost $1,500. By comparison,
a year of tuition at Williams College costs $30,000, and a Big Mac costs $2.79.

88

Bibliography

[CL90] J. H. Conway and J. C. Lagarias. Tiling with polyominoes and com-
binatorial group theory. Journal of Combinatorial Theory, Series A,
53:183–208, 1990. 4

[Dan89] L. Danzer. Three-dimensional analogs of the planar penrose tilings and
quasicrystals. Discrete Mathematics, 76:1–7, 1989. 3

[Dis59] W. Disney. Donald in mathmagic land. Walt Disney Home Video
Release, 1959. 9

[GS87] Branko Grünbaum and G. C. Shephard. Tilings and Patterns, chap-
ter 10. W. H. Freeman and Company, New York, 1987. 5, 9, 13, 15,
47, 57

[Min98] Linden Minnick. Generalized forcing in aperiodic tilings. Technical
report, Williams College Department of Computer Science, 1998. 8,
10, 21, 57, 76, 77

[Pen74] Roger Penrose. The rôle of aesthetics in pure and applied mathematical
research. Bulletin of the Institute of Mathematics and Its Applications,
10:266–271, 1974. 3, 4

[Soc91] Joshua E.S. Socolar. Growth rules for quasicrystals. In D. P. DiVin-
cenzo and P. J. Steinhardt, editors, Quasicrystals: The State of the Art,
volume 11 of Directions in Condensed Matter Physics. World Scientific,
Singapore, 1991. 5, 85

89

	Introduction
	Tilings
	Aperiodic Tilings
	Penrose Tilings
	Legal Tilings

	Background for Research
	Ammann Bars: A Non-Local Aid
	Minnick's Thesis
	Proposed work

	Musical Sequences
	Theory
	Inflation
	Musical Sequence Rules
	Deflation
	Forcings

	Ammann Bars
	Five-Fold Interactions
	Extended Theory
	Forcing Arbitrary Ammann bars
	Minnick's Work

	Pseudo-Code Implementation

	Forcing Rules
	Finding Forced Shapes
	Finding Unique Patterns

	Matching Patterns
	Forcing New Information
	Darts
	Minnick's Double Kite

	Drawing Tiles
	Kites
	Darts

	Review

	Implementation
	Overview
	Musical Sequences and Ammann Bars
	Intersections
	Pattern Matching
	Feature Forcing
	Feature Drawing
	Pattern Matching Algorithm In Detail
	Scan Line Algorithm
	Mapping Verification

	Complexity
	Ammann Bars
	Further Optimizations

	Results
	Verified Empires
	The Ace
	The Deuce
	The Sun
	The Star
	The Jack
	The Queen
	The King

	Ongoing and Future work
	Interference
	Three-Dimensional work
	Iterative Verification

	Summary and Conclusion
	Colophon

